Displaying 21 – 40 of 176

Showing per page

On a volume constrained variational problem in SBV 2 ( Ω ) : part I

Ana Cristina Barroso, José Matias (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of minimizing the energy E ( u ) : = Ω | u ( x ) | 2 d x + S u Ω 1 + | [ u ] ( x ) | d H N - 1 ( x ) among all functions u S B V 2 ( Ω ) for which two level sets { u = l i } have prescribed Lebesgue measure α i . Subject to this volume constraint the existence of minimizers for E ( · ) is proved and the asymptotic behaviour of the solutions is investigated.

On a Volume Constrained Variational Problem in SBV²(Ω): Part I

Ana Cristina Barroso, José Matias (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of minimizing the energy E ( u ) : = Ω | u ( x ) | 2 d x + S u Ω 1 + | [ u ] ( x ) | d H N - 1 ( x ) among all functions u ∈ SBV²(Ω) for which two level sets { u = l i } have prescribed Lebesgue measure α i . Subject to this volume constraint the existence of minimizers for E(.) is proved and the asymptotic behaviour of the solutions is investigated.

On annealed elliptic Green's function estimates

Daniel Marahrens, Felix Otto (2015)

Mathematica Bohemica

We consider a random, uniformly elliptic coefficient field a on the lattice d . The distribution · of the coefficient field is assumed to be stationary. Delmotte and Deuschel showed that the gradient and second mixed derivative of the parabolic Green’s function G ( t , x , y ) satisfy optimal annealed estimates which are L 2 and L 1 , respectively, in probability, i.e., they obtained bounds on | x G ( t , x , y ) | 2 1 / 2 and | x y G ( t , x , y ) | . In particular, the elliptic Green’s function G ( x , y ) satisfies optimal annealed bounds. In their recent work, the authors...

On bilinear restriction type estimates and applications to nonlinear wave equations

Sergiù Klainerman (1998)

Journées équations aux dérivées partielles

I will start with a short review of the classical restriction theorem for the sphere and Strichartz estimates for the wave equation. I then plan to give a detailed presentation of their recent generalizations in the form of “bilinear estimates”. In addition to the L 2 theory, which is now quite well developed, I plan to discuss a more general point of view concerning the L p theory. By investigating simple examples I will derive necessary conditions for such estimates to be true. I also plan to discuss...

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations∗∗∗

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On evolution Galerkin methods for the Maxwell and the linearized Euler equations

Mária Lukáčová-Medviďová, Jitka Saibertová, Gerald G. Warnecke, Yousef Zahaykah (2004)

Applications of Mathematics

The subject of the paper is the derivation and analysis of evolution Galerkin schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to construct a method which takes into account better the infinitely many directions of propagation of waves. To do this the initial function is evolved using the characteristic cone and then projected onto a finite element space. We derive the divergence-free property and estimate the dispersion relation as well. We present some numerical...

Currently displaying 21 – 40 of 176