Perturbations singulières et noyaux de Poisson
L'articolo riassume il quadro dei risultati noti circa il cosiddetto problema di Stefan con sopraraffreddamento. Con ciò si intende in senso lato l'estensione del modello di Stefan a quei casi in cui la temperatura della fase liquida (solida) non è confinata al di sopra (sotto) di quella di cambiamento di fase, supposta costante. La nostra discussione è prevalentemente rivolta allo sviluppo di singolarità (non limitatezza della velocità dell'interfaccia, ecc.), al modo di prevederle, di prevenirle...
We study the flow of an incompressible homogeneous fluid whose material coefficients depend on the temperature and the shear-rate. For large class of models we establish the existence of a suitable weak solution for two-dimensional flows of fluid in a bounded domain. The proof relies on the reconstruction of the globally integrable pressure, available due to considered Navier’s slip boundary conditions, and on the so-called -truncation method, used to obtain the strong convergence of the velocity...
In this paper, we study the singular vortex patches in the two-dimensional incompressible Navier-Stokes equations. We show, in particular, that if the initial vortex patch is C1+s outside a singular set Σ, so the velocity is, for all time, lipschitzian outside the image of Σ through the viscous flow. In addition, the correponding lipschitzian norm is independent of the viscosity. This allows us to prove some results related to the inviscid limit for the geometric structures of the vortex patch.
We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is
The method of reliable solutions alias the worst scenario method is applied to the problem of von Kármán equations with uncertain initial deflection. Assuming two-mode initial and total deflections and using Galerkin approximations, the analysis leads to a system of two nonlinear algebraic equations with one or two uncertain parameters-amplitudes of initial deflections. Numerical examples involve (i) minimization of lower buckling loads and (ii) maximization of the maximal mean reduced stress.