Previous Page 3

Displaying 41 – 52 of 52

Showing per page

Global time estimates for solutions to equations of dissipative type

Michael Ruzhansky, James Smith (2005)

Journées Équations aux dérivées partielles

Global time estimates of L p - L q norms of solutions to general strictly hyperbolic partial differential equations are considered. The case of special interest in this paper are equations exhibiting the dissipative behaviour. Results are applied to discuss time decay estimates for Fokker-Planck equations and for wave type equations with negative mass.

Gradient flows with metric and differentiable structures, and applications to the Wasserstein space

Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we summarize some of the main results of a forthcoming book on this topic, where we examine in detail the theory of curves of maximal slope in a general metric setting, following some ideas introduced in [11, 5], and study in detail the case of the Wasserstein space of probability measures. In the first part we derive new general conditions ensuring convergence of the implicit time discretization scheme to a curve of maximal slope, the uniqueness, and the error estimates. In the second...

Green’s function pointwise estimates for the modified Lax–Friedrichs scheme

Pauline Godillon (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to find estimates of the Green’s function of stationary discrete shock profiles and discrete boundary layers of the modified Lax–Friedrichs numerical scheme, by using techniques developed by Zumbrun and Howard [27] in the continuous viscous setting.

Green's function pointwise estimates for the modified Lax–Friedrichs scheme

Pauline Godillon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to find estimates of the Green's function of stationary discrete shock profiles and discrete boundary layers of the modified Lax–Friedrichs numerical scheme, by using techniques developed by Zumbrun and Howard [CITE] in the continuous viscous setting.

Currently displaying 41 – 52 of 52

Previous Page 3