On the Cauchy-problem for generalized Kadomtsev-Petviashvili-II equations.
A Lur’e feedback control system consisting of a linear, infinite-dimensional system of boundary control in factor form and a nonlinear static sector type controller is considered. A criterion of absolute strong asymptotic stability of the null equilibrium is obtained using a quadratic form Lyapunov functional. The construction of such a functional is reduced to solving a Lur’e system of equations. A sufficient strict circle criterion of solvability of the latter is found, which is based on results...
A Lur'e feedback control system consisting of a linear, infinite-dimensional system of boundary control in factor form and a nonlinear static sector type controller is considered. A criterion of absolute strong asymptotic stability of the null equilibrium is obtained using a quadratic form Lyapunov functional. The construction of such a functional is reduced to solving a Lur'e system of equations. A sufficient strict circle criterion of solvability of the latter is found, which is based on...
The backward Euler algorithm for the multidimensional nonhomogeneous heat equation is analyzed, based on the finite element method. The existence and uniqueness of the numerical solution is investigated. Also, the convergence of the numerical solutions is studied.
We first introduce the notion of microdifferential operators of WKB type and then develop their exact WKB analysis using microlocal analysis; a recursive way of constructing a WKB solution for such an operator is given through the symbol calculus of microdifferential operators, and their local structure near their turning points is discussed by a Weierstrass-type division theorem for such operators. A detailed study of the Berk-Book equation is given in Appendix.
We investigate the existence of solutions for the Dirichlet problem including the generalized balance of a membrane equation. We present a duality theory and variational principle for this problem. As one of the consequences of the duality we obtain some numerical results which give a measure of a duality gap between the primal and dual functional for approximate solutions.
The existence of nontrivial solutions is considered for the fractional Schrödinger-Poisson system with double quasi-linear terms: where is the fractional Laplacian for , with and . Under assumptions on and , we prove the existence of positive solutions and negative solutions for the above system by using perturbation method and the mountain pass theorem.