On the Chaplighin method for partial differential equations of the first order
A Lur’e feedback control system consisting of a linear, infinite-dimensional system of boundary control in factor form and a nonlinear static sector type controller is considered. A criterion of absolute strong asymptotic stability of the null equilibrium is obtained using a quadratic form Lyapunov functional. The construction of such a functional is reduced to solving a Lur’e system of equations. A sufficient strict circle criterion of solvability of the latter is found, which is based on results...
A Lur'e feedback control system consisting of a linear, infinite-dimensional system of boundary control in factor form and a nonlinear static sector type controller is considered. A criterion of absolute strong asymptotic stability of the null equilibrium is obtained using a quadratic form Lyapunov functional. The construction of such a functional is reduced to solving a Lur'e system of equations. A sufficient strict circle criterion of solvability of the latter is found, which is based on...
The backward Euler algorithm for the multidimensional nonhomogeneous heat equation is analyzed, based on the finite element method. The existence and uniqueness of the numerical solution is investigated. Also, the convergence of the numerical solutions is studied.
We first introduce the notion of microdifferential operators of WKB type and then develop their exact WKB analysis using microlocal analysis; a recursive way of constructing a WKB solution for such an operator is given through the symbol calculus of microdifferential operators, and their local structure near their turning points is discussed by a Weierstrass-type division theorem for such operators. A detailed study of the Berk-Book equation is given in Appendix.
We investigate the existence of solutions for the Dirichlet problem including the generalized balance of a membrane equation. We present a duality theory and variational principle for this problem. As one of the consequences of the duality we obtain some numerical results which give a measure of a duality gap between the primal and dual functional for approximate solutions.
We show that the number of derivatives of a non negative 2-order symbol needed to establish the classical Fefferman-Phong inequality is bounded by improving thus the bound obtained recently by N. Lerner and Y. Morimoto. In the case of symbols of type , we show that this number is bounded by ; more precisely, for a non negative symbol , the Fefferman-Phong inequality holds if are bounded for, roughly, . To obtain such results and others, we first prove an abstract result which says that...