Displaying 1001 – 1020 of 1617

Showing per page

Poches de tourbillon singulières dans un fluide faiblement visqueux.

Taoufik Hmidi (2006)

Revista Matemática Iberoamericana

In this paper, we study the singular vortex patches in the two-dimensional incompressible Navier-Stokes equations. We show, in particular, that if the initial vortex patch is C1+s outside a singular set Σ, so the velocity is, for all time, lipschitzian outside the image of Σ through the viscous flow. In addition, the correponding lipschitzian norm is independent of the viscosity. This allows us to prove some results related to the inviscid limit for the geometric structures of the vortex patch.

Positive solutions for some quasilinear elliptic equations with natural growths

Lucio Boccardo (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is - div 1 + u r u + u m - 2 u u 2 = f in Ω u = 0 su Ω .

Post-buckling range of plates in axial compression with uncertain initial geometric imperfections

Ivan Hlaváček (2002)

Applications of Mathematics

The method of reliable solutions alias the worst scenario method is applied to the problem of von Kármán equations with uncertain initial deflection. Assuming two-mode initial and total deflections and using Galerkin approximations, the analysis leads to a system of two nonlinear algebraic equations with one or two uncertain parameters-amplitudes of initial deflections. Numerical examples involve (i) minimization of lower buckling loads and (ii) maximization of the maximal mean reduced stress.

Currently displaying 1001 – 1020 of 1617