Displaying 1021 – 1040 of 1617

Showing per page

Problème mixte hyperbolique avec saut sur la condition aux limites

Jean-Marc Delort (1989)

Annales de l'institut Fourier

Ce travail est consacré à l’étude du problème mixte linéaire pour un système N × N non caractéristique, strictement hyperbolique, de degré 1, dans le cas où la condition aux limites présente un saut sur une hypersurface non caractéristique du bord. Sous la condition de Lopatinski uniforme hors de cette hypersurface et sous une hypothèse supplémentaire le long de celle-ci, on prouve un résultat d’existence et d’unicité dans l’espace de Sobolev H ν ν 0 , 1 2 . On étudie ensuite la propagation de la régularité conormale...

Prolongement des solutions holomorphes de problèmes aux limites

André Martinez (1985)

Annales de l'institut Fourier

Dans cet article, on démontre, par des techniques d’analyse microlocale analytique, un résultat local de prolongement holomorphe pour les solutions de problèmes aux limites. Afin de minimiser le domaine dans lequel on suppose holomorphes au départ ces solutions, un résultat préliminaire de prolongement pour les solutions d’équations aux dérivées partielles a été obtenu, par la technique des déformations non caractéristiques, utilisant un théorème de Zerner dont on donne ici une nouvelle démonstration....

Propagation et réflexion des singularités pour l'équation de Schrödinger non linéaire

Jérémie Szeftel (2005)

Annales de l’institut Fourier

Nous construisons un calcul paradifférentiel adapté à l'équation de Schrödinger qui nous permet de montrer un théorème de propagation des singularités pour l'équation de Schrödinger non linéaire en adaptant la méthode de Bony. Nous construisons également la version tangentielle du calcul précédent qui nous permet de montrer un théorème de réflexion transverse des singularités pour l'équation de Schrödinger non linéaire. Nous utilisons alors ce théorème pour calculer l'opérateur...

Currently displaying 1021 – 1040 of 1617