Displaying 141 – 160 of 176

Showing per page

On the spectrum of the p-biharmonic operator involving p-Hardy's inequality

Abdelouahed El Khalil, My Driss Morchid Alaoui, Abdelfattah Touzani (2014)

Applicationes Mathematicae

In this paper, we study the spectrum for the following eigenvalue problem with the p-biharmonic operator involving the Hardy term: Δ ( | Δ u | p - 2 Δ u ) = λ ( | u | p - 2 u ) / ( δ ( x ) 2 p ) in Ω, u W 2 , p ( Ω ) . By using the variational technique and the Hardy-Rellich inequality, we prove that the above problem has at least one increasing sequence of positive eigenvalues.

On the structure of layers for singularly perturbed equations in the case of unbounded energy

E. Sanchez-Palencia (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider singular perturbation variational problems depending on a small parameter ε . The right hand side is such that the energy does not remain bounded as ε 0 . The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with ε > 0 are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after integrating...

On the structure of layers for singularly perturbed equations in the case of unbounded energy

E. Sanchez–Palencia (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider singular perturbation variational problems depending on a small parameter ε. The right hand side is such that the energy does not remain bounded as ε → 0. The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with ε > 0 are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after...

On the theory of thermoelasticity

Henryk Kołakowski, Jarosław Łazuka (2011)

Applicationes Mathematicae

The aim of this paper is to prove some properties of the solution to the Cauchy problem for the system of partial differential equations describing thermoelasticity of nonsimple materials proposed by D. Iesan. Explicit formulas for the Fourier transform and some estimates in Sobolev spaces for the solution of the Cauchy problem are proved.

On uniqueness in electromagnetic scattering from biperiodic structures

Armin Lechleiter, Dinh-Liem Nguyen (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Consider time-harmonic electromagnetic wave scattering from a biperiodic dielectric structure mounted on a perfectly conducting plate in three dimensions. Given that uniqueness of solution holds, existence of solution follows from a well-known Fredholm framework for the variational formulation of the problem in a suitable Sobolev space. In this paper, we derive a Rellich identity for a solution to this variational problem under suitable smoothness conditions on the material parameter. Under additional...

Currently displaying 141 – 160 of 176