Compactness of conformal metrics with positive gaussian curvature in
In this paper, we obtain some existence theorems of nonnegative solutions with compact support for homogeneous Dirichlet elliptic problems; we also extend these results to parabolis systems.Supersolution and comparison principles are our main ingredients.
Partant du principe de conservation de la masse et du principe fondamental de la dynamique, on retrouve l'équation d'Euler nous permettant de décrire les modèles asymptotiques de propagation d'ondes dans des eaux peu profondes en dimension 1. Pour décrire la propagation des ondes en dimension 2, Kadomtsev et Petviashvili [ 15 (1970) 539] utilisent une perturbation linéaire de l'équation de KdV. Mais cela ne précise pas si les équations ainsi obtenues dérivent de l'équation d'Euler, c'est ce que...
In this paper we prove a comparison result between semicontinuous viscosity subsolutions and supersolutions to Hamilton-Jacobi equations of the form in where the Hamiltonian H may be noncoercive in the gradient Du. As a consequence of the comparison result and the Perron's method we get the existence of a continuous solution of this equation.
A nonlinear parabolic problem with the Newton boundary conditions and its weak formulation are examined. The problem describes nonstationary heat conduction in inhomogeneous and anisotropic media. We prove a comparison principle which guarantees that for greater data we obtain, in general, greater weak solutions. A new strategy of proving the comparison principle is presented.
We prove comparison principles for viscosity solutions of nonlinear second order, uniformly elliptic equations, which extend previous results of P. L. Lions, R. Jensen and H. Ishii. Some basic pointwise estimates for classical solutions are also extended to continuous viscosity solutions.
In this paper we study a variational inequality related to a linear differential operator of elliptic type. We give a pointwise bound for the rearrangement of the solution u, and an estimate for the L2-norm of the gradient of u.