Displaying 81 – 100 of 526

Showing per page

Comparaison entre modèles d'ondes de surface en dimension 2

Youcef Mammeri (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Partant du principe de conservation de la masse et du principe fondamental de la dynamique, on retrouve l'équation d'Euler nous permettant de décrire les modèles asymptotiques de propagation d'ondes dans des eaux peu profondes en dimension 1. Pour décrire la propagation des ondes en dimension 2, Kadomtsev et Petviashvili [ 15 (1970) 539] utilisent une perturbation linéaire de l'équation de KdV. Mais cela ne précise pas si les équations ainsi obtenues dérivent de l'équation d'Euler, c'est ce que...

Comparison and existence results for evolutive non-coercive first-order Hamilton-Jacobi equations

Alessandra Cutrì, Francesca Da Lio (2007)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove a comparison result between semicontinuous viscosity subsolutions and supersolutions to Hamilton-Jacobi equations of the form u t + H ( x , D u ) = 0 in I R n × ( 0 , T ) where the Hamiltonian H may be noncoercive in the gradient Du. As a consequence of the comparison result and the Perron's method we get the existence of a continuous solution of this equation.

Comparison principle for a nonlinear parabolic problem of a nonmonotone type

Tomas Vejchodský (2002)

Applicationes Mathematicae

A nonlinear parabolic problem with the Newton boundary conditions and its weak formulation are examined. The problem describes nonstationary heat conduction in inhomogeneous and anisotropic media. We prove a comparison principle which guarantees that for greater data we obtain, in general, greater weak solutions. A new strategy of proving the comparison principle is presented.

Comparison results for a class of variational inequalities.

M. R. Posteraro, R. Volpicelli (1993)

Revista Matemática de la Universidad Complutense de Madrid

In this paper we study a variational inequality related to a linear differential operator of elliptic type. We give a pointwise bound for the rearrangement of the solution u, and an estimate for the L2-norm of the gradient of u.

Currently displaying 81 – 100 of 526