The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 10 of 10

Showing per page

Singular non polynomial perturbations of - Δ + | x | 2

Franco Nardini (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studia la perturbazione dello spettro deiroperatore - Δ + | x | 2 dovuta all'introduzione di un potenziale singolare non polinomiale e si prova che la serie perturbativa del primo autovalore di tale operatore è sommabile secondo Borel.

Singular Perturbation Analysis of Travelling Waves for a Model in Phytopathology

J. B. Burie, A. Calonnec, A. Ducrot (2010)

Mathematical Modelling of Natural Phenomena

We investigate the structure of travelling waves for a model of a fungal disease propagating over a vineyard. This model is based on a set of ODEs of the SIR-type coupled with two reaction-diffusion equations describing the dispersal of the spores produced by the fungus inside and over the vineyard. An estimate of the biological parameters in the model suggests to use a singular perturbation analysis. It allows us to compute the speed and the profile of the travelling waves. The analytical results...

Solutions to a perturbed critical semilinear equation concerning the N -Laplacian in N

Elliot Tonkes (1999)

Commentationes Mathematicae Universitatis Carolinae

The aim of this paper is to study the existence of variational solutions to a nonhomogeneous elliptic equation involving the N -Laplacian - Δ N u - div ( | u | N - 2 u ) = e ( x , u ) + h ( x ) in Ω where u W 0 1 , N ( N ) , Ω is a bounded smooth domain in N , N 2 , e ( x , u ) is a critical nonlinearity in the sense of the Trudinger-Moser inequality and h ( x ) ( W 0 1 , N ) * is a small perturbation.

Currently displaying 1 – 10 of 10

Page 1