Stability of classes of mappings and Hölder continuity of higher derivatives of elliptic solutions to systems of nonlinear differential equations.
The paper considers the static Maxwell system for a Lipschitz domain with perfectly conducting boundary. Electric and magnetic permeability ε and μ are allowed to be monotone and Lipschitz continuous functions of the electromagnetic field. The existence theory is developed in the framework of the theory of monotone operators.
On considère le problème de Dirichlet :etoù désigne la boule unité de Nous donnons une démonstration simple du fait que si , alors ; de plus la croissance du coefficient de Lipschitz de la différentielle de est contrôlée par l’inverse de la distance au bord.
Ce papier porte sur l’étude mathématique d’une équation du type de Grad-Mercier qui décrit, dans certaines circonstances, l’équilibre d’un plasma confiné [H. Grad, P.N. Hu et D.C. Stevens, Proc. Nat. Acad. Sci. USA, 72,n10 (1975), 3789–3793, C. Mercier, Publication of Euratom, CEA, Luxembourg (1974), C. Mercier, Communications personnelles à R. Temam et aux auteurs]. Il s’agit de trouver une fonction “régulière” solution du systèmeoù est un ouvert borné régulier de , etL’opérateur non linéaire...
We study uniformly elliptic fully nonlinear equations , and prove results of Gidas–Ni–Nirenberg type for positive viscosity solutions of such equations. We show that symmetries of the equation and the domain are reflected by the solution, both in bounded and unbounded domains.
Le but de l’exposé est de présenter les résultats obtenus par S. Bianchini et A. Bressan sur le problème de Cauchy pour des perturbations visqueuses de systèmes strictement hyperboliques en une dimension d’espace. Ils ont en particulier montré l’existence globale (), l’unicité et la stabilité des solutions et justifié la convergence quand tend vers zéro pour des données initiales à petite variation totale. Leur analyse montre aussi que les solutions du système hyperbolique ainsi obtenues...
We study systems of reaction-diffusion equations with discontinuous spatially distributed hysteresis on the right-hand side. The input of the hysteresis is given by a vector-valued function of space and time. Such systems describe hysteretic interaction of non-diffusive (bacteria, cells, etc.) and diffusive (nutrient, proteins, etc.) substances leading to formation of spatial patterns. We provide sufficient conditions under which the problem is well posed in spite of the assumed discontinuity of...