Previous Page 2

Displaying 21 – 30 of 30

Showing per page

Existence, uniqueness and stability for spatially inhomogeneous Becker-Döring equations with diffusion and convection terms

P. B. Dubovski, S.-Y. Ha (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider the spatially inhomogeneous Bekker-Döring infinite-dimensional kinetic system describing the evolution of coagulating and fragmenting particles under the influence of convection and diffusion. The simultaneous consideration of opposite coagulating and fragmenting processes causes many additional difficulties in the investigation of spatially inhomogeneous problems, where the space variable changes differently for distinct particle sizes. To overcome these difficulties, we use a modified...

Explosion pour l’équation de Schrödinger au régime du “log log”

Nicolas Burq (2005/2006)

Séminaire Bourbaki

On présente dans cet exposé des résultats récents de Merle et Raphael sur l’analyse des solutions explosives de l’équation de Schrödinger L 2 critique. On s’intéresse en particulier à leur preuve du fait que les solutions d’énergie négative (dont on savait qu’elles explosaient par l’argument du viriel) et dont la norme L 2 est proche de celle de l’état fondamental, explosent au régime du “log log”et que ce comportement est stable.

Exponential stability for Timoshenko model with thermal effect

Luiz Gutemberg Rosário Miranda, Bruno Magalhães Alves (2025)

Applications of Mathematics

We performe an exponential decay analysis for a Timoshenko-type system under the thermal effect by constructing the Lyapunov functional. More precisely, this thermal effect is acting as a mechanism for dissipating energy generated by the bending of the beam, acting only on the vertical displacement equation, different from other works already existing in the literature. Furthermore, we show the good placement of the problem using semigroup theory.

Currently displaying 21 – 30 of 30

Previous Page 2