Displaying 261 – 280 of 920

Showing per page

Finite-dimensionality of 2-D micropolar fluid flow with periodic boundary conditions

Piotr Szopa (2007)

Applicationes Mathematicae

This paper is devoted to proving the finite-dimensionality of a two-dimensional micropolar fluid flow with periodic boundary conditions. We define the notions of determining modes and nodes and estimate their number. We check how the distribution of the forces and moments through modes influences the estimate of the number of determining modes. We also estimate the dimension of the global attractor. Finally, we compare our results with analogous results for the Navier-Stokes equation.

Free boundary problems and transonic shocks for the Euler equations in unbounded domains

Gui-Qiang Chen, Mikhail Feldman (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We establish the existence and stability of multidimensional transonic shocks (hyperbolic-elliptic shocks), which are not nearly orthogonal to the flow direction, for the Euler equations for steady compressible potential fluids in unbounded domains in n , n 3 . The Euler equations can be written as a second order nonlinear equation of mixed hyperbolic-elliptic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the...

Free-energy-dissipative schemes for the Oldroyd-B model

Sébastien Boyaval, Tony Lelièvre, Claude Mangoubi (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we analyze the stability of various numerical schemes for differential models of viscoelastic fluids. More precisely, we consider the prototypical Oldroyd-B model, for which a free energy dissipation holds, and we show under which assumptions such a dissipation is also satisfied for the numerical scheme. Among the numerical schemes we analyze, we consider some discretizations based on the log-formulation of the Oldroyd-B system proposed by Fattal and Kupferman in [J. Non-Newtonian...

Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation

Nicola Garofalo, Ermanno Lanconelli (1990)

Annales de l'institut Fourier

A recent result of Bahouri shows that continuation from an open set fails in general for solutions of u = V u where V C and = j = 1 N - 1 X j 2 is a (nonelliptic) operator in R N satisfying Hörmander’s condition for hypoellipticity. In this paper we study the model case when is the subelliptic Laplacian on the Heisenberg group and V is a zero order term which is allowed to be unbounded. We provide a sufficient condition, involving a first order differential inequality, for nontrivial solutions of u = V u to have a finite order...

Fully nonlinear second order elliptic equations with large zeroth order coefficient

L. C. Evans, Pierre-Louis Lions (1981)

Annales de l'institut Fourier

We prove the existence of classical solutions to certain fully non-linear second order elliptic equations with large zeroth order coefficient. The principal tool is an a priori estimate asserting that the C 2 , α -norm of the solution cannot lie in a certain interval of the positive real axis.

Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples

Dominique Chapelle, Asven Gariah, Jacques Sainte-Marie (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a numerical analysis of proper orthogonal decomposition (POD) model reductions in which a priori error estimates are expressed in terms of the projection errors that are controlled in the construction of POD bases. These error estimates are derived for generic parabolic evolution PDEs, including with non-linear Lipschitz right-hand sides, and for wave-like equations. A specific projection continuity norm appears in the estimates and – whereas a general uniform continuity bound seems out...

Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples

Dominique Chapelle, Asven Gariah, Jacques Sainte-Marie (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a numerical analysis of proper orthogonal decomposition (POD) model reductions in which a priori error estimates are expressed in terms of the projection errors that are controlled in the construction of POD bases. These error estimates are derived for generic parabolic evolution PDEs, including with non-linear Lipschitz right-hand sides, and for wave-like equations. A specific projection continuity norm appears in the estimates and – whereas a general uniform continuity bound seems out...

Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples

Dominique Chapelle, Asven Gariah, Jacques Sainte-Marie (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a numerical analysis of proper orthogonal decomposition (POD) model reductions in which a priori error estimates are expressed in terms of the projection errors that are controlled in the construction of POD bases. These error estimates are derived for generic parabolic evolution PDEs, including with non-linear Lipschitz right-hand sides, and for wave-like equations. A specific projection continuity norm appears in the estimates and – whereas a general uniform continuity bound seems out...

Currently displaying 261 – 280 of 920