Displaying 41 – 60 of 217

Showing per page

Blow up, global existence and growth rate estimates in nonlinear parabolic systems

Joanna Rencławowicz (2000)

Colloquium Mathematicae

We prove Fujita-type global existence and nonexistence theorems for a system of m equations (m > 1) with different diffusion coefficients, i.e. u i t - d i Δ u i = k = 1 m u k p k i , i = 1 , . . . , m , x N , t > 0 , with nonnegative, bounded, continuous initial values and p k i 0 , i , k = 1 , . . . , m , d i > 0 , i = 1 , . . . , m . For solutions which blow up at t = T < , we derive the following bounds on the blow up rate: u i ( x , t ) C ( T - t ) - α i with C > 0 and α i defined in terms of p k i .

Comparison theorems for temperatures in noncylindrical domains

Eugene B. Fabes, Nicola Garofalo, Sandro Salsa (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa Nota gli autori presentano alcuni risultati riguardanti il comportamento alla frontiera di domini non cilindrici delle soluzioni positive dell'equazione del calore. Una conseguenza è che due soluzioni positive qualunque, che si annullano su una parte della frontiera laterale, tendono a zero con lo stesso ordine.

Continuity of the quenching time in a semilinear parabolic equation

Théodore Boni, Firmin N'Gohisse (2008)

Annales UMCS, Mathematica

In this paper, we consider the following initial-boundary value problem [...] where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ is the Laplacian, v is the exterior normal unit vector on ∂Ω. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial data u0. Finally, we give some numerical results to illustrate our analysis.

Currently displaying 41 – 60 of 217