Displaying 61 – 80 of 190

Showing per page

Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions

Cholmin Sin, Sin-Il Ri (2022)

Mathematica Bohemica

We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided p ( x ) > 2 n / ( n + 2 ) . To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.

Existence of weak solutions to doubly degenerate diffusion equations

Aleš Matas, Jochen Merker (2012)

Applications of Mathematics

We prove existence of weak solutions to doubly degenerate diffusion equations u ˙ = Δ p u m - 1 + f ( m , p 2 ) by Faedo-Galerkin approximation for general domains and general nonlinearities. More precisely, we discuss the equation in an abstract setting, which allows to choose function spaces corresponding to bounded or unbounded domains Ω n with Dirichlet or Neumann boundary conditions. The function f can be an inhomogeneity or a nonlinearity involving terms of the form f ( u ) or div ( F ( u ) ) . In the appendix, an introduction to weak differentiability...

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d ,d= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d , d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....

Finite-dimensional Pullback Attractors for Non-autonomous Newton-Boussinesq Equations in Some Two-dimensional Unbounded Domains

Cung The Anh, Dang Thanh Son (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

We study the existence and long-time behavior of weak solutions to Newton-Boussinesq equations in two-dimensional domains satisfying the Poincaré inequality. We prove the existence of a unique minimal finite-dimensional pullback D σ -attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms.

Generalized n-Laplacian: boundedness of weak solutions to the Dirichlet problem with nonlinearity in the critical growth range

Robert Černý (2014)

Open Mathematics

Let n ≥ 2 and let Ω ⊂ ℝn be an open set. We prove the boundedness of weak solutions to the problem u W 0 1 L Φ Ω a n d - d i v Φ ' u u u + V x Φ ' u u u = f x , u + μ h x i n Ω , where ϕ is a Young function such that the space W 01 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, h ∈ L Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω =...

Global Attractors for a Class of Semilinear Degenerate Parabolic Equations on N

Cung The Anh, Le Thi Thuy (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove the existence of global attractors for the following semilinear degenerate parabolic equation on N : ∂u/∂t - div(σ(x)∇ u) + λu + f(x,u) = g(x), under a new condition concerning the variable nonnegative diffusivity σ(·) and for an arbitrary polynomial growth order of the nonlinearity f. To overcome some difficulties caused by the lack of compactness of the embeddings, these results are proved by combining the tail estimates method and the asymptotic a priori estimate method.

Integrability for solutions to quasilinear elliptic systems

Francesco Leonetti, Pier Vincenzo Petricca (2010)

Commentationes Mathematicae Universitatis Carolinae

In this paper we prove an estimate for the measure of superlevel sets of weak solutions to quasilinear elliptic systems in divergence form. In some special cases, such an estimate allows us to improve on the integrability of the solution.

Currently displaying 61 – 80 of 190