Displaying 21 – 40 of 280

Showing per page

A viscosity solution method for Shape-From-Shading without image boundary data

Emmanuel Prados, Fabio Camilli, Olivier Faugeras (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we propose a solution of the Lambertian shape-from-shading (SFS) problem by designing a new mathematical framework based on the notion of viscosity solution. The power of our approach is twofolds: (1) it defines a notion of weak solutions (in the viscosity sense) which does not necessarily require boundary data. Moreover, it allows to characterize the viscosity solutions by their “minimums”; and (2) it unifies the works of [Rouy and Tourin, SIAM J. Numer. Anal.29 (1992) 867–884],...

An existence proof for the stationary compressible Stokes problem

A. Fettah, T. Gallouët, H. Lakehal (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper, we prove the existence of a solution for a quite general stationary compressible Stokes problem including, in particular, gravity effects. The Equation Of State gives the pressure as an increasing superlinear function of the density. This existence result is obtained by passing to the limit on the solution of a viscous approximation of the continuity equation.

Analytical results on a model for damaging in domains and interfaces

Elena Bonetti, Michel Frémond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a model describing damage processes in a (nonlinear) elastic body which is in contact with adhesion with a rigid support. On the basis of phase transitions theory, we detail the derivation of the model written in terms of a PDE system, combined with suitable initial and boundary conditions. Some internal constraints on the variables are introduced in the equations and on the boundary, to get physical consistency. We prove the existence of global in time solutions (to a suitable...

Analytical results on a model for damaging in domains and interfaces*

Elena Bonetti, Michel Frémond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a model describing damage processes in a (nonlinear) elastic body which is in contact with adhesion with a rigid support. On the basis of phase transitions theory, we detail the derivation of the model written in terms of a PDE system, combined with suitable initial and boundary conditions. Some internal constraints on the variables are introduced in the equations and on the boundary, to get physical consistency. We prove the existence of global in time solutions (to a suitable...

A-Quasiconvexity: Relaxation and Homogenization

Andrea Braides, Irene Fonseca, Giovanni Leoni (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Integral representation of relaxed energies and of Γ-limits of functionals ( u , v ) Ω f ( x , u ( x ) , v ( x ) ) d x are obtained when sequences of fields v may develop oscillations and are constrained to satisfy a system of first order linear partial differential equations. This framework includes the treatement of divergence-free fields, Maxwell's equations in micromagnetics, and curl-free fields. In the latter case classical relaxation theorems in W1,p, are recovered.

Currently displaying 21 – 40 of 280