Boundary value problem for Fuchsian partial differential equations and reflection of singularities
In the present paper we study the unique solvability of two non-local boundary value problems with continuous and special gluing conditions for parabolic-hyperbolic type equations. The uniqueness of the solutions of the considered problems are proven by the “abc” method. Existence theorems for the solutions of these problems are proven by the method of integral equations. The obtained results can be used for studying local and non-local boundary-value problems for mixed-hyperbolic type equations...
On considère une solution , assez régulière, d’une équation aux dérivées partielles non linéaire. Si est conormale par rapport a une hypersurface simplement caractéristique pour l’équation linéarisée, on étudie l’équation de transport satisfaite par son symbole principal, et on en déduit la propagation de la propriété “ est conormale classique”.
Let be a linear partial differential operator with holomorphic coefficients, whereandWe consider Cauchy problem with holomorphic dataWe can easily get a formal solution , bu in general it diverges. We show under some conditions that for any sector with the opening less that a constant determined by , there is a function holomorphic except on such that and as in .