Semiclassical distribution of eigenvalues for elliptic operators with Hölder continuous coefficients, part i: non-critical case
We consider a version of the Weyl formula describing the asymptotic behaviour of the counting function of eigenvalues in the semiclassical approximation for self-adjoint elliptic differential operators under weak regularity hypotheses. Our aim is to treat Hölder continuous coefficients and to investigate the case of critical energy values as well.