Simultaneous versus nonsimultaneous blowup for a system of heat equations coupled boundary flux.
In this paper we derive a posteriori error estimates for the heat equation. The time discretization strategy is based on a θ-method and the mesh used for each time-slab is independent of the mesh used for the previous time-slab. The novelty of this paper is an upper bound for the error caused by the coarsening of the mesh used for computing the solution in the previous time-slab. The technique applied for deriving this upper bound is independent of the problem and can be generalized to other time...
A model of coupled parabolic and ordinary differential equations for a heterogeneous catalytic reaction is considered and the existence and uniqueness theorem of the classic solution is proved.
A mathematical model of dissociative adsorption and associative desorption for diatomic molecules is generalized. The model is described by a coupled system of parabolic and ordinary differential equations. The existence and uniqueness theorem of the classical solution is proved.
The existence of solutions to an initial-boundary value problem to the heat equation in a bounded domain in ℝ³ is proved. The domain contains an axis and the existence is proved in weighted anisotropic Sobolev spaces with weight equal to a negative power of the distance to the axis. Therefore we prove the existence of solutions which vanish sufficiently fast when approaching the axis. We restrict our considerations to the Dirichlet problem, but the Neumann and the third boundary value problems can...
This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed...
In this paper we discuss two closely related problems arising in environmental monitoring. The first is the source localization problem linked to the question How can one find an unknown "contamination source"? The second is an associated sensor placement problem: Where should we place sensors that are capable of providing the necessary "adequate data" for that? Our approach is based on some concepts and ideas developed in mathematical control theory of partial differential equations.
This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential that is equal to along the boundary of the computational domain . Using a symmetrization...
This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential U that is equal to +∞ along the boundary ∂D of the computational domain D. Using a symmetrization...
We study nonlinear diffusion problems of the form with free boundaries. Such problems may be used to describe the spreading of a biological or chemical species, with the free boundary representing the expanding front. For special of the Fisher-KPP type, the problem was investigated by Du and Lin [DL]. Here we consider much more general nonlinear terms. For any which is and satisfies , we show that the omega limit set of every bounded positive solution is determined by a stationary solution....
We show existence of nonconstant stable equilibria for the Neumann reaction-diffusion problem on domains with fractures inside. We also show that the stability properties of all hyperbolic equilibria remain unchanged under domain perturbation in a quite general sense, covered by the theory of Mosco convergence.