On a regularizing effect of Schrödinger type groups
We consider the linear convection-diffusion equation associated to higher order elliptic operators⎧ ut + Ltu = a∇u on Rnx(0,∞)⎩ u(0) = u0 ∈ L1(Rn),where a is a constant vector in Rn, m ∈ N*, n ≥ 1 and L0 belongs to a class of higher order elliptic operators in divergence form associated to non-smooth bounded measurable coefficients on Rn. The aim of this paper is to study the asymptotic behavior, in Lp (1 ≤ p ≤ ∞), of the derivatives Dγu(t) of the solution of the convection-diffusion equation...
Sfruttando i risultati di [1], si prova che le derivate spaziali di ordine con delle soluzioni in di un sistema parabolico quasilineare di ordine con andamenti strettamente controllati, sono parzialmente hölderiane in con esponente di hölderianità decrescente al crescere di .
This paper is concerned with periodic solutions for perturbations of the sweeping process introduced by J.J. Moreau in 1971. The perturbed equation has the form where C is a T-periodic multifunction from [0,T] into the set of nonempty convex weakly compact subsets of a separable Hilbert space H, is the normal cone of C(t) at u(t), f:[0,T] × H∪H is a Carathéodory function and Du is the differential measure of the periodic BV solution u. Several existence results of periodic solutions for this...