On parabolic initial-boundary value problems with critical growth for the gradient
This paper contains some results concerning self-similar radial solutions for some system of chemotaxis. This kind of solutions describe asymptotic profiles of arbitrary solutions with small mass. Our approach is based on a fixed point analysis for an appropriate integral operator acting on a suitably defined convex subset of some cone in the space of bounded and continuous functions.
The paper concerns the (local and global) existence, nonexistence, uniqueness and some properties of nonnegative solutions of a nonlinear density dependent diffusion equation with homogeneous Dirichlet boundary conditions.
Two models of reaction-diffusion are presented: a non-Fickian diffusion model described by a system of a parabolic PDE and a first order ODE, further, porosity-mineralogy changes in porous medium which is modelled by a system consisting of an ODE, a parabolic and an elliptic equation. Existence of weak solutions is shown by the Schauder fixed point theorem combined with the theory of monotone type operators.
A priori estimates for solutions of a system describing the interaction of gravitationally attracting particles with a self-similar pressure term are proved. The presented theory covers the case of the model with diffusions that obey either Fermi-Dirac statistics or a polytropic one.
Si discretizza il problema dell'ostacolo parabolico con differenze all'indietro nel tempo ed elementi finiti lineari nello spazio e si dimostrano stime dell'errore per la frontiera libera discreta.
Presented herein is a method of constructing solutions of semilinear dissipative evolution equations in bounded domains. For small initial data this approach permits one to represent the solution in the form of an eigenfunction expansion series and to calculate the higher-order long-time asymptotics. It is applied to the spatially 3D Kuramoto-Sivashinsky equation in the unit ball B in the linearly stable case. A global-in-time mild solution is constructed in the space , s < 2, and the uniqueness...
The blow-up of solutions for a parabolic equation with nonlocal exponential nonlinearity is studied.
The author examined non-zero -periodic (in time) solutions for a semilinear beam equation under the condition that the period is an irrational multiple of the length. It is shown that for a.e. (in the sense of the Lebesgue measure on ) the solutions do exist provided the right-hand side of the equation is sublinear.
For an equation of the type of porous media equation the Cauchy-Dirichlet and Cauchy-Neumann problems are considered. The existence and uniqueness results in the case of initial and boundary data are given.
A quasilinear noncoupled thermoelastic system is studied both on a threedimensional bounded domain with a smooth boundary and for a generalized model involving the influence of supports. Sufficient conditions are derived under which the stresses are bounded and continuous on the closure of the domain.
The paper deals with the question of global solution to boundary value problem for the system of semilinear heat equation for and complementary nonlinear differential equation for (“thermal memory”). Uniqueness of the solution is shown and the method of successive approximations is used for the proof of existence of a global solution provided the condition holds. The condition is verified for some particular cases (e. g.: bounded nonlinearity, homogeneous Neumann problem (even for unbounded...
We consider a nonlinear differential-functional parabolic boundary initial value problem (1) ⎧A z + f(x,z(t,x),z(t,·)) - ∂z/∂t = 0 for t > 0, x ∈ G, ⎨z(t,x) = h(x) for t > 0, x ∈ ∂G, ⎩z(0,x) = φ₀(x) for x ∈ G, and the associated elliptic boundary value problem with Dirichlet condition (2) ⎧Az + f(x,z(x),z(·)) = 0 for x ∈ G, ⎨z(x) = h(x) for x ∈ ∂G ⎩ where , G is an open and bounded domain with (0 < α ≤ 1) boundary, the operator Az := ∑j,k=1m ajk(x) (∂²z/(∂xj ∂xk)) is...