Page 1

Displaying 1 – 3 of 3

Showing per page

On geometry of fronts in wave propagations

Susumu Tanabé (1999)

Banach Center Publications

We give a geometric descriptions of (wave) fronts in wave propagation processes. Concrete form of defining function of wave front issued from initial algebraic variety is obtained by the aid of Gauss-Manin systems associated with certain complete intersection singularities. In the case of propagations on the plane, we get restrictions on types of possible cusps that can appear on the wave front.

On the problem of symmetrization of hyperbolic equations

V. Kostin (1992)

Banach Center Publications

The aspects of symmetrization of hyperbolic equations which will be considered in this review have their own history and are related to some classical results from other areas of mathematics ([12]). Here symmetrization means representation of an initial system of equations in the form of a symmetric t-hyperbolic system in the sense of Friedrichs. Some equations of mathematical physics, for example, the equations of acoustics, of gas dynamics, etc. already have this form. In the 70's S. K. Godunov...

Currently displaying 1 – 3 of 3

Page 1