Page 1

Displaying 1 – 2 of 2

Showing per page

Modeling of vibration for functionally graded beams

Gülsemay Yiğit, Ali Şahin, Mustafa Bayram (2016)

Open Mathematics

In this study, a vibration problem of Euler-Bernoulli beam manufactured with Functionally Graded Material (FGM), which is modelled by fourth-order partial differential equations with variable coefficients, is examined by using the Adomian Decomposition Method (ADM).The method is one of the useful and powerful methods which can be easily applied to linear and nonlinear initial and boundary value problems. As to functionally graded materials, they are composites mixed by two or more materials at a...

Modeling the tip-sample interaction in atomic force microscopy with Timoshenko beam theory

Julio R. Claeyssen, Teresa Tsukazan, Leticia Tonetto, Daniela Tolfo (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

A matrix framework is developed for single and multispan micro-cantilevers Timoshenko beam models of use in atomic force microscopy (AFM). They are considered subject to general forcing loads and boundary conditions for modeling tipsample interaction. Surface effects are considered in the frequency analysis of supported and cantilever microbeams. Extensive use is made of a distributed matrix fundamental response that allows to determine forced responses through convolution and to absorb non-homogeneous...

Currently displaying 1 – 2 of 2

Page 1