Estimates for the -Neumann operator on strongly pseudo-convex domain with Lipschitz boundary.
Nous étudions les domaines de qui satisfont (localement) à l’estimation suivante :où est un voisinage d’un point du bord .L’intérêt de cette estimation réside dans son utilisation pour montrer une estimation sous-elliptique. Remarquons qu’elle est toujours satisfaite par les domaines pseudo-convexes, ce qui rend naturel le fait qu’elle soit liée au comportement dans des parties négatives des valeurs propres de la forme de Levi.
Let be a complex manifold, a generic submanifold of , the real underlying manifold to . Let be an open subset of with analytic, a complexification of . We first recall the notion of -tuboid of and of and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary. We relate the regularity at the boundary for to the extendability of functions on to -tuboids of . Next, if has complex dimension 2, we give results on extension...
Let D be a bounded strictly pseudoconvex domain in Cn. We construct approximative solution formulas for the equation i∂∂`u = θ, θ being an exact (1,1)-form in D. We show that our formulas give simple proofs of known estimates and indicate further applications.
For a bounded domain of , we introduce a notion of «-pseudoconvexity» of new type and prove that for a given -closed -form that is smooth up to the boundary on , and for , there exists a -form smooth up to the boundary on which is a solution of the equation
In this paper, we prove the existence of a global solution to an initial-boundary value problem for 1-D flows of the viscous heat-conducting radiative and reactive gases. The key point here is that the growth exponent of heat conductivity is allowed to be any nonnegative constant; in particular, constant heat conductivity is allowed.