Asymptotic properties of the magnetic integrated density of states.
We consider a periodic pseudo-differential operator on the real line, which is a lower-order perturbation of an elliptic operator with a homogeneous symbol and constant coefficients. It is proved that the density of states of such an operator admits a complete asymptotic expansion at large energies. A few first terms of this expansion are found in a closed form.
We present a pair of conjectural formulas that compute the leading term of the spectral asymptotics of a Schrödinger operator on with quasi-homogeneous polynomial magnetic and electric fields. The construction is based on the orbit method due to Kirillov. It makes sense for any nilpotent Lie algebra and is related to the geometry of coadjoint orbits, as well as to the growth properties of certain “algebraic integrals,” studied by Nilsson. By using the direct variational method, we prove that the...
We consider the Dirichlet Laplacian in a thin curved three-dimensional rod. The rod is finite. Its cross-section is constant and small, and rotates along the reference curve in an arbitrary way. We find a two-parametric set of the eigenvalues of such operator and construct their complete asymptotic expansions. We show that this two-parametric set contains any prescribed number of the first eigenvalues of the considered operator. We obtain the complete asymptotic expansions for the eigenfunctions...
We consider the Dirichlet Laplacian in a thin curved three-dimensional rod. The rod is finite. Its cross-section is constant and small, and rotates along the reference curve in an arbitrary way. We find a two-parametric set of the eigenvalues of such operator and construct their complete asymptotic expansions. We show that this two-parametric set contains any prescribed number of the first eigenvalues of the considered operator. We obtain the complete asymptotic expansions for the eigenfunctions...