Soliton equations and hyperbolic maps
Novikov-Veselov equation is a (2+1)-dimensional analog of the classic Korteweg-de Vries equation integrable via the inverse scattering translform for the 2-dimensional stationary Schrödinger equation. In this talk we present some recent results on existence and absence of algebraically localized solitons for the Novikov-Veselov equation as well as some results on the large time behavior of the “inverse scattering solutions” for this equation.
We obtain solvability conditions in H6(ℝ3) for a sixth order partial differential equation which is the linearized Cahn-Hilliard problem using the results derived for a Schrödinger type operator without Fredholm property in our preceding article [18].
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads...
This article is a proceedings version of the ongoing work [1], and has been the object of a talk of the second author during the Journées “Équations aux Dérivées Partielles” (Biarritz, 2012).We address the decay rates of the energy of the damped wave equation when the damping coefficient does not satisfy the Geometric Control Condition (GCC). First, we give a link with the controllability of the associated Schrödinger equation. We prove that the observability of the Schrödinger group implies that...
The Itô integral calculus and analysis on nilpotent Lie grops are used to estimate the number of eigenvalues of the Schrödinger operator for a quantum system with a polynomial magnetic vector potential. An analogue of the Cwikel-Lieb-Rosenblum inequality is proved.