The Leading Singularity of Scattering Kernel for a Transparent Obstacle.
We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem where is a bounded domain, is a real number and , satisfy appropriate growth conditions. Moreover, the coefficient contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in . The main tool is the investigation of the associated homogeneous eigenvalue problem and an application...
We study nodal sets for typical eigenfunctions of the Laplacian on the standard torus in dimensions. Making use of the multiplicities in the spectrum of the Laplacian, we put a Gaussian measure on the eigenspaces and use it to average over the eigenspace. We consider a sequence of eigenvalues with growing multiplicity .The quantity that we study is the Leray, or microcanonical, measure of the nodal set. We show that the expected value of the Leray measure of an eigenfunction is constant, equal...
We introduce and study the linear symmetric systems associated with the modified Cherednik operators. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite propagation speed property of it.
We consider a free boundary value problem for a viscous, incompressible fluid contained in an uncovered three-dimensional rectangular channel, with gravity and surface tension, governed by the Navier-Stokes equations. We obtain existence results for the linear and nonlinear time-dependent problem. We analyse the qualitative behavior of the flow using tools of bifurcation theory. The main result is a Hopf bifurcation theorem with -symmetry.
Let Ω be a bounded domain in with smooth boundary ∂Ω and let L denote a second order linear elliptic differential operator and a mapping from into itself with compact inverse, with eigenvalues , each repeated according to its multiplicity, 0 < λ1 < λ2 < λ3 ≤ ... ≤ λi ≤ ... → ∞. We consider a semilinear elliptic Dirichlet problem in Ω, u=0 on ∂ Ω. We assume that , and f is generated by and . We show a relation between the multiplicity of solutions and source terms in the equation....
We consider the -Laplacian operator on a domain equipped with a Finsler metric. We recall relevant properties of its first eigenfunction for finite and investigate the limit problem as .
We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.
We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.
We show that the study of the principal spectrum of a linear nonautonomous parabolic PDE of second order on a bounded domain, with the Dirichlet or Neumann boundary conditions, reduces to the investigation of the spectrum of the linear nonautonomous ODE v̇ = a(t)v.