Page 1

Displaying 1 – 4 of 4

Showing per page

The nonlinear future stability of the FLRW family of solutions to the irrotational Euler-Einstein system with a positive cosmological constant

Igor Rodnianski, Jared Speck (2013)

Journal of the European Mathematical Society

In this article, we study small perturbations of the family of Friedmann-Lemaître-Robertson-Walker cosmological background solutions to the coupled Euler-Einstein system with a positive cosmological constant in 1 + 3 spacetime dimensions. The background solutions model an initially uniform quiet fluid of positive energy density evolving in a spacetime undergoing exponentially accelerated expansion. Our nonlinear analysis shows that under the equation of state p = c 2 ρ , 0 < c 2 < 1 / 3 , the background metric + fluid solutions...

The vortex method for 2D ideal flows in the exterior of a disk

Diogo Arsénio, Emmanuel Dormy, Christophe Lacave (2014)

Journées Équations aux dérivées partielles

The vortex method is a common numerical and theoretical approach used to implement the motion of an ideal flow, in which the vorticity is approximated by a sum of point vortices, so that the Euler equations read as a system of ordinary differential equations. Such a method is well justified in the full plane, thanks to the explicit representation formulas of Biot and Savart. In an exterior domain, we also replace the impermeable boundary by a collection of point vortices generating the circulation...

Currently displaying 1 – 4 of 4

Page 1