Page 1

Displaying 1 – 4 of 4

Showing per page

A note on measure-valued solutions to the full Euler system

Václav Mácha, Emil Wiedemann (2022)

Applications of Mathematics

We construct two particular solutions of the full Euler system which emanate from the same initial data. Our aim is to show that the convex combination of these two solutions form a measure-valued solution which may not be approximated by a sequence of weak solutions. As a result, the weak* closure of the set of all weak solutions, considered as parametrized measures, is not equal to the space of all measure-valued solutions. This is in stark contrast with the incompressible Euler equations.

About global existence and asymptotic behavior for two dimensional gravity water waves

Thomas Alazard (2012/2013)

Séminaire Laurent Schwartz — EDP et applications

The main result of this talk is a global existence theorem for the water waves equation with smooth, small, and decaying at infinity Cauchy data. We obtain moreover an asymptotic description in physical coordinates of the solution, which shows that modified scattering holds.The proof is based on a bootstrap argument involving L 2 and L estimates. The L 2 bounds are proved in the paper [5]. They rely on a normal forms paradifferential method allowing one to obtain energy estimates on the Eulerian formulation...

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating...

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating...

Currently displaying 1 – 4 of 4

Page 1