Page 1

Displaying 1 – 11 of 11

Showing per page

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations∗∗∗

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On one algorithm for solving the problem of source function reconstruction

Vyacheslav Maksimov (2010)

International Journal of Applied Mathematics and Computer Science

In the paper, the problem of source function reconstruction in a differential equation of the parabolic type is investigated. Using the semigroup representation of trajectories of dynamical systems, we build a finite-step iterative procedure for solving this problem. The algorithm originates from the theory of closed-loop control (the method of extremal shift). At every step of the algorithm, the sum of a quality criterion and a linear penalty term is minimized. This procedure is robust to perturbations...

Optimal boundary control for hyperdiffusion equation

Hanif Heidari, Alaeddin Malek (2010)

Kybernetika

In this paper, we consider the solution of optimal control problem for hyperdiffusion equation involving boundary function of continuous time variable in its cost function. A specific direct approach based on infinite series of Fourier expansion in space and temporal integration by parts for analytical solution is proposed to solve optimal boundary control for hyperdiffusion equation. The time domain is divided into number of finite subdomains and optimal function is estimated at each subdomain...

Optimal control of systems determined by strongly nonlinear operator valued measures

N.U. Ahmed (2008)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider a class of distributed parameter systems (partial differential equations) determined by strongly nonlinear operator valued measures in the setting of the Gelfand triple V ↪ H ↪ V* with continuous and dense embeddings where H is a separable Hilbert space and V is a reflexive Banach space with dual V*. The system is given by dx + A(dt,x) = f(t,x)γ(dt) + B(t)u(dt), x(0) = ξ, t ∈ I ≡ [0,T] where A is a strongly nonlinear operator valued measure...

Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation

Bao-Zhu Guo, Cheng-Zhong Xu, Hassan Hammouri (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a one-dimensional wave equation system for which the...

Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation∗

Bao-Zhu Guo, Cheng-Zhong Xu, Hassan Hammouri (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a...

Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation∗

Bao-Zhu Guo, Cheng-Zhong Xu, Hassan Hammouri (2012)

ESAIM: Control, Optimisation and Calculus of Variations

The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a...

Currently displaying 1 – 11 of 11

Page 1