Page 1

Displaying 1 – 4 of 4

Showing per page

Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type

Karine Beauchard (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator x 2 + | x | 2 γ y 2 ( γ > 0 ) in the rectangle ( x , y ) ( - 1 , 1 ) × ( 0 , 1 ) or with the Kolmogorov-type operator v γ x f + v 2 f ( γ { 1 , 2 } ) in the rectangle ( x , v ) 𝕋 × ( - 1 , 1 ) , under an additive control supported in an open subset ω of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for γ < 1 and that there is no time for which it is null controllable for γ > 1 ....

Null-control and measurable sets

Jone Apraiz, Luis Escauriaza (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the interior and boundary null-controllability of some parabolic evolutions with controls acting over measurable sets.

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations*

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

Currently displaying 1 – 4 of 4

Page 1