Displaying 1401 – 1420 of 1901

Showing per page

Solvability of two stationary free boundary problems for the Navier-Stokes equations

V. A. Solonnikov (1998)

Bollettino dell'Unione Matematica Italiana

Si studiano due problemi con frontiera libera per equazioni stazionarie di Navier-Stokes: il problema del movimento di un liquido viscoso incomprimibile generato dalla rotazione di una sbarra rigida immersa nel liquido con velocità angolare assegnata e il problema della fuoriuscita di un liquido da un tubo circolare nello spazio libero. Si assegna l'angolo di contatto tra la frontiera libera e la superficie del tubo e, nel secondo problema, il flusso totale del liquido attraverso l'apertura del...

Solving inverse nodal problem with frozen argument by using second Chebyshev wavelet method

Yu Ping Wang, Shahrbanoo Akbarpoor Kiasary, Emrah Yılmaz (2024)

Applications of Mathematics

We consider the inverse nodal problem for Sturm-Liouville (S-L) equation with frozen argument. Asymptotic behaviours of eigenfunctions, nodal parameters are represented in two cases and numerical algorithms are produced to solve the given problems. Subsequently, solution of inverse nodal problem is calculated by the second Chebyshev wavelet method (SCW), accuracy and effectiveness of the method are shown in some numerical examples.

Some generalizations in the mathematical developments of the theory of the geodetic overdetermined problems.

F. Sacerdote, F. Sansò (1990)

Revista Matemática de la Universidad Complutense de Madrid

Two particular cases of the overdetermined gravimetry-gradiometry problem are discussed: (i) the case of a latitude-dependant statistical weight for gradiometric data, corresponding to a data distribution coming from satellite polar orbits, (ii) the case of a volume distribution, instead of a surface distribution, for satellite gradiometric data. In both cases a discussion of numerical methods for solving the problem with realistic data is started; for case (i), an analytic solution is found under...

Some Hölder-logarithmic estimates on Hardy-Sobolev spaces

Imed Feki, Ameni Massoudi (2024)

Czechoslovak Mathematical Journal

We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces H k , p ( G ) , where k * , 1 p and G is either the open unit disk 𝔻 or the annular domain G s , 0 < s < 1 of the complex space . More precisely, we study the behavior on the interior of G of any function f belonging to the unit ball of the Hardy-Sobolev spaces H k , p ( G ) from its behavior on any open connected subset I of the boundary G of G with respect to the L 1 -norm. Our results can be viewed as an improvement and generalization of those established...

Some inverse and control problems for fluids

Enrique Fernández-Cara, Thierry Horsin, Henry Kasumba (2013)

Annales mathématiques Blaise Pascal

This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.

Some mathematical problems arising in heterogeneous insular ecological models.

Sébastien Gaucel, Michel Langlais (2002)

RACSAM

En esta nota se analizan dos modelos matemáticos deterministas planteados en problemas ecológicos causados por la introducción de nuevas especies en ambientes insulares heterogéneos. En el primero desarrollamos un modelo epidemológico con transmisión indirecta del virus por medio del ambiente. En el segundo se introduce un modelo específico de depredador-presa que exhibe la extinción en tiempo finito de las especies. Ambos modelos involucran sistemas de ecuaciones en derivadas parciales con interesantes...

Some new results on a Stefan problem in a concentrated capacity

Enrico Magenes (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

An existence and uniqueness theorem for a nonlinear parabolic system of partial differential equations, connected with the theory of heat conduction with a transition phase in a concentrated capacity, is given in sufficiently general hypotheses on the data.

Currently displaying 1401 – 1420 of 1901