Existence and global stability of periodic solution for delayed discrete high-order Hopfield-type neural networks.
In this paper we consider a nonlinear Love equation associated with Dirichlet conditions. First, under suitable conditions, the existence of a unique local weak solution is proved. Next, a blow up result for solutions with negative initial energy is also established. Finally, a sufficient condition guaranteeing the global existence and exponential decay of weak solutions is given. The proofs are based on the linearization method, the Galerkin method associated with a priori estimates, weak convergence,...
Le Calvez a montré que si est un homéomorphisme isotope à l’identité d’une surface admettant un relèvement au revêtement universel n’ayant pas de points fixes, alors il existe un feuilletage topologique de transverse à la dynamique. Nous montrons que ce résultat se généralise au cas où admet des points fixes. Nous obtenons alors un feuilletage topologique singulier transverse à la dynamique dont les singularités sont un ensemble fermé de points fixes de .
Soit un groupe défini sur les rationnels, simplement connexe, -quasisimple et compact sur . On étudie des suites de sous-ensembles des points rationnels de définis par des conditions sur leur projection dans le groupe des adèles finies de . Nous montrons dans ce cadre un résultat d’équirépartition vers la probabilité de Haar sur le groupe des points réels. On utilise pour cela des propriétés de mélange de l’action du groupe des points adéliques sur l’espace . Pour illustrer ce résultat,...
This article is concerned with the study of the discrete version of generalized ergodic Calderón-Zygmund singular operators. It is shown that such discrete ergodic singular operators for a class of superadditive processes, namely, bounded symmetric admissible processes relative to measure preserving transformations, are weak (1,1). From this maximal inequality, a.e. existence of the discrete ergodic singular transform is obtained for such superadditive processes. This generalizes the well-known...