Displaying 2341 – 2360 of 4762

Showing per page

Maximal distributional chaos of weighted shift operators on Köthe sequence spaces

Xinxing Wu (2014)

Czechoslovak Mathematical Journal

During the last ten some years, many research works were devoted to the chaotic behavior of the weighted shift operator on the Köthe sequence space. In this note, a sufficient condition ensuring that the weighted shift operator B w n : λ p ( A ) λ p ( A ) defined on the Köthe sequence space λ p ( A ) exhibits distributional ϵ -chaos for any 0 < ϵ < diam λ p ( A ) and any n is obtained. Under this assumption, the principal measure of B w n is equal to 1. In particular, every Devaney chaotic shift operator exhibits distributional ϵ -chaos for any 0 < ϵ < diam λ p ( A ) .

Maximal entropy measures in dimension zero

Dawid Huczek (2012)

Colloquium Mathematicae

We prove that an invertible zero-dimensional dynamical system has an invariant measure of maximal entropy if and only if it is an extension of an asymptotically h-expansive system of equal topological entropy.

Maximal equicontinuous factors and cohomology for tiling spaces

Marcy Barge, Johannes Kellendonk, Scott Schmieding (2012)

Fundamenta Mathematicae

We study the homomorphism induced on cohomology by the maximal equicontinuous factor map of a tiling space. We will see that in degree one this map is injective and has torsion free cokernel. We show by example, however, that, in degree one, the cohomology of the maximal equicontinuous factor may not be a direct summand of the tiling cohomology.

Maximal Hamiltonian tori for polygon spaces

Jean-Claude Hausmann, Susan Tolman (2003)

Annales de l’institut Fourier

We study the poset of Hamiltonian tori for polygon spaces. We determine some maximal elements and give examples where maximal Hamiltonian tori are not all of the same dimension.

Maximal scrambled sets for simple chaotic functions.

Víctor Jiménez López (1996)

Publicacions Matemàtiques

This paper is a continuation of [1], where a explicit description of the scrambled sets of weakly unimodal functions of type 2∞ was given. Its aim is to show that, for an appropriate non-trivial subset of the above family of functions, this description can be made in a much more effective and informative way.

Maximum number of limit cycles for generalized Liénard polynomial differential systems

Aziza Berbache, Ahmed Bendjeddou, Sabah Benadouane (2021)

Mathematica Bohemica

We consider limit cycles of a class of polynomial differential systems of the form x ˙ = y , y ˙ = - x - ε ( g 21 ( x ) y 2 α + 1 + f 21 ( x ) y 2 β ) - ε 2 ( g 22 ( x ) y 2 α + 1 + f 22 ( x ) y 2 β ) , where β and α are positive integers, g 2 j and f 2 j have degree m and n , respectively, for each j = 1 , 2 , and ε is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center x ˙ = y , y ˙ = - x using the averaging theory of first and second order.

Mean lower bounds for Markov operators

Eduard Emel'yanov, Manfred Wolff (2004)

Annales Polonici Mathematici

Let T be a Markov operator on an L¹-space. We study conditions under which T is mean ergodic and satisfies dim Fix(T) < ∞. Among other things we prove that the sequence ( n - 1 k = 0 n - 1 T k ) converges strongly to a rank-one projection if and only if there exists a function 0 ≠ h ∈ L¹₊ which satisfies l i m n | | ( h - n - 1 k = 0 n - 1 T k f ) | | = 0 for every density f. Analogous results for strongly continuous semigroups are given.

Mean stability of a stochastic difference equation

Viorica Mariela Ungureanu, Sui Sun Cheng (2008)

Annales Polonici Mathematici

A simple personal saving model with interest rate based on random fluctuation of national growth rate is considered. We establish connections between the mean stochastic stability of our model and the deterministic stability of related partial difference equations. Then the asymptotic behavior of our stochastic model is studied. Although the model is simple, the techniques for obtaining its properties are not, and we make use of the theory of abstract Banach algebras and weighted spaces. It is hoped...

Mean-Field Optimal Control

Massimo Fornasier, Francesco Solombrino (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We introduce the concept of mean-field optimal control which is the rigorous limit process connecting finite dimensional optimal control problems with ODE constraints modeling multi-agent interactions to an infinite dimensional optimal control problem with a constraint given by a PDE of Vlasov-type, governing the dynamics of the probability distribution of interacting agents. While in the classical mean-field theory one studies the behavior of a large number of small individuals freely interacting...

Means in complete manifolds: uniqueness and approximation

Marc Arnaudon, Laurent Miclo (2014)

ESAIM: Probability and Statistics

Let M be a complete Riemannian manifold, M ∈ ℕ and p ≥ 1. We prove that almost everywhere on x = (x1,...,xN) ∈ MN for Lebesgue measure in MN, the measure μ ( x ) = N k = 1 N x k μ ( x ) = 1 N ∑ k = 1 N δ x k has a uniquep–mean ep(x). As a consequence, if X = (X1,...,XN) is a MN-valued random variable with absolutely continuous law, then almost surely μ(X(ω)) has a unique p–mean. In particular if (Xn)n ≥ 1 is an independent sample of an absolutely continuous law in M, then the process ep,n(ω) = ep(X1(ω),...,Xn(ω)) is...

Measures of maximal entropy for random β -expansions

Karma Dajani, Martijn de Vries (2005)

Journal of the European Mathematical Society

Let β > 1 be a non-integer. We consider β -expansions of the form i = 1 d i / β i , where the digits ( d i ) i 1 are generated by means of a Borel map K β defined on { 0 , 1 } × [ 0 , β / ( β 1 ) ] . We show that K β has a unique mixing measure ν β of maximal entropy with marginal measure an infinite convolution of Bernoulli measures. Furthermore, under the measure ν β the digits ( d i ) i 1 form a uniform Bernoulli process. In case 1 has a finite greedy expansion with positive coefficients, the measure of maximal entropy is Markov. We also discuss the uniqueness of β -expansions....

Measure-theoretic unfriendly colorings

Clinton T. Conley (2014)

Fundamenta Mathematicae

We consider the problem of finding a measurable unfriendly partition of the vertex set of a locally finite Borel graph on standard probability space. After isolating a sufficient condition for the existence of such a partition, we show how it settles the dynamical analog of the problem (up to weak equivalence) for graphs induced by free, measure-preserving actions of groups with designated finite generating set. As a corollary, we obtain the existence of translation-invariant random unfriendly colorings...

Currently displaying 2341 – 2360 of 4762