Deformations of the algebra of functions on hermitian symmetric spaces resulting from quantization
According to A. Lasota, a continuous function from a real compact interval into itself is called generically chaotic if the set of all points , for which and , is residual in . Being inspired by this definition we say that is densely chaotic if this set is dense in . A characterization of the generically chaotic functions is known. In the paper the densely chaotic functions are characterized and it is proved that in the class of piecewise monotone maps with finite number of pieces the...
Let Tbe a measurable transformation of a probability space , preserving the measureπ. Let X be a random variable with law π. Call K(⋅, ⋅) a regular version of the conditional law of X given T(X). Fix . We first prove that ifB is reachable from π-almost every point for a Markov chain of kernel K, then the T-orbit of π-almost every point X visits B. We then apply this result to the Lévy transform, which transforms the Brownian motion W into the Brownian motion |W| − L, where L is the local time...
In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.
In this paper we prove a Central Limit Theorem for standard kernel estimates of the invariant density of one-dimensional dynamical systems. The two main steps of the proof of this theorem are the following: the study of rate of convergence for the variance of the estimator and a variation on the Lindeberg–Rio method. We also give an extension in the case of weakly dependent sequences in a sense introduced by Doukhan and Louhichi.
We announce that a class of problems containing the classical periodically forced pendulum equation displays the main features of chaotic dynamics for a dense set of forcing terms in a space of periodic functions with zero mean value. The approach is based on global variational methods.
The Lévy transform of a Brownian motion B is the Brownian motion B(1) given by Bt(1) = ∫0tsgn(Bs)dBs; call B(n) the Brownian motion obtained from B by iterating n times this transformation. We establish that almost surely, the sequence of paths (t → Bt(n))n⩾0 is dense in Wiener space, for the topology of uniform convergence on compact time intervals.
The Lévy transform of a Brownian motion B is the Brownian motion B(1) given by Bt(1) = ∫0tsgn(Bs)dBs; call B(n) the Brownian motion obtained from B by iterating n times this transformation. We establish that almost surely, the sequence of paths (t → Bt(n))n⩾0 is dense in Wiener space, for the topology of uniform convergence on compact time intervals.
Transformations T:[0,1] → [0,1] with two monotonic pieces are considered. Under the assumption that T is topologically transitive and , it is proved that the invariant measures concentrated on periodic orbits are dense in the set of all invariant probability measures.
We prove that if A is a basin of immediate attraction to a periodic attracting or parabolic point for a rational map f on the Riemann sphere, then the periodic points in the boundary of A are dense in this boundary. To prove this in the non-simply connected or parabolic situations we prove a more abstract, geometric coding trees version.
Let K be the Cantor set. We prove that arbitrarily close to a homeomorphism T: K → K there exists a homeomorphism T̃: K → K such that the ω-limit of every orbit is a periodic orbit. We also prove that arbitrarily close to an endomorphism T: K → K there exists an endomorphism T̃: K → K with every orbit finally periodic.