Approximating entropy of maps of the interval
Let β ∈ (1,2) and x ∈ [0,1/(β-1)]. We call a sequence a β-expansion for x if . We call a finite sequence an n-prefix for x if it can be extended to form a β-expansion of x. In this paper we study how good an approximation is provided by the set of n-prefixes. Given , we introduce the following subset of ℝ: In other words, is the set of x ∈ ℝ for which there exist infinitely many solutions to the inequalities . When , the Borel-Cantelli lemma tells us that the Lebesgue measure of is...
In this work we will consider a class of second order perturbed Hamiltonian systems of the form , where t ∈ ℝ, q ∈ ℝⁿ, with a superquadratic growth condition on a time periodic potential V: ℝ × ℝⁿ → ℝ and a small aperiodic forcing term f: ℝ → ℝⁿ. To get an almost homoclinic solution we approximate the original system by time periodic ones with larger and larger time periods. These approximative systems admit periodic solutions, and an almost homoclinic solution for the original system is obtained...
We describe some of the machinery behind recent progress in establishing infinitely many arithmetic progressions of length k in various sets of integers, in particular in arbitrary dense subsets of the integers, and in the primes.
We analyze and cite applications of various, loosely related notions of uniformity inherent to the phenomenon of (multiple) recurrence in ergodic theory. An assortment of results are obtained, among them sharpenings of two theorems due to Bourgain. The first of these, which in the original guarantees existence of sets x,x+h, in subsets E of positive measure in the unit interval, with lower bounds on h depending only on m(E), is expanded to the case of arbitrary finite polynomial configurations...