Displaying 141 – 160 of 4759

Showing per page

A map maintaining the orbits of a given d -action

Bartosz Frej, Agata Kwaśnicka (2016)

Colloquium Mathematicae

Giordano et al. (2010) showed that every minimal free d -action of a Cantor space X is orbit equivalent to some ℤ-action. Trying to avoid the K-theory used there and modifying Forrest’s (2000) construction of a Bratteli diagram, we show how to define a (one-dimensional) continuous and injective map F on X∖one point such that for a residual subset of X the orbits of F are the same as the orbits of a given minimal free d -action.

A matrix formalism for conjugacies of higher-dimensional shifts of finite type

Michael Schraudner (2008)

Colloquium Mathematicae

We develop a natural matrix formalism for state splittings and amalgamations of higher-dimensional subshifts of finite type which extends the common notion of strong shift equivalence of ℤ⁺-matrices. Using the decomposition theorem every topological conjugacy between two d -shifts of finite type can thus be factorized into a finite chain of matrix transformations acting on the transition matrices of the two subshifts. Our results may be used algorithmically in computer explorations on topological...

A model of cardiac tissue as an excitable medium with two interacting pacemakers having refractory time

Alexander Loskutov, Sergei Rybalko, Ekaterina Zhuchkova (2003)

Banach Center Publications

A quite general model of the nonlinear interaction of two impulse systems describing some types of cardiac arrhythmias is developed. Taking into account a refractory time the phase locking phenomena are investigated. Effects of the tongue splitting and their interweaving in the parametric space are found. The results obtained allow us to predict the behavior of excitable systems with two pacemakers depending on the type and intensity of their interaction and the initial phase.

A necessary and sufficient condition for the existence of an exponential attractor

Dalibor Pražák (2003)

Open Mathematics

We give a necessary and sufficient condition for the existence of an exponential attractor. The condition is formulated in the context of metric spaces. It also captures the quantitative properties of the attractor, i.e., the dimension and the rate of attraction. As an application, we show that the evolution operator for the wave equation with nonlinear damping has an exponential attractor.

A new algebraic invariant for weak equivalence of sofic subshifts

Laura Chaubard, Alfredo Costa (2008)

RAIRO - Theoretical Informatics and Applications

It is studied how taking the inverse image by a sliding block code affects the syntactic semigroup of a sofic subshift. The main tool are ζ-semigroups, considered as recognition structures for sofic subshifts. A new algebraic invariant is obtained for weak equivalence of sofic subshifts, by determining which classes of sofic subshifts naturally defined by pseudovarieties of finite semigroups are closed under weak equivalence. Among such classes are the classes of almost finite type subshifts...

A new approach to generalized chaos synchronization based on the stability of the error system

Zhi Liang Zhu, Shuping Li, Hai Yu (2008)

Kybernetika

With a chaotic system being divided into linear and nonlinear parts, a new approach is presented to realize generalized chaos synchronization by using feedback control and parameter commutation. Based on a linear transformation, the problem of generalized synchronization (GS) is transformed into the stability problem of the synchronous error system, and an existence condition for GS is derived. Furthermore, the performance of GS can be improved according to the configuration of the GS velocity....

A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems

Saleh Mobayen, Fairouz Tchier (2015)

Kybernetika

This paper presents a novel sliding mode controller for a class of uncertain nonlinear systems. Based on Lyapunov stability theorem and linear matrix inequality technique, a sufficient condition is derived to guarantee the global asymptotical stability of the error dynamics and a linear sliding surface is existed depending on state errors. A new reaching control law is designed to satisfy the presence of the sliding mode around the linear surface in the finite time, and its parameters are obtained...

A New Mathematical Model of Syphilis

F. A. Milner, R. Zhao (2010)

Mathematical Modelling of Natural Phenomena

The CDC launched the National Plan to Eliminate Syphilis from the USA in October 1999 [4]. In order to reach this goal, a good understanding of the transmission dynamics of the disease is necessary. Based on a SIRS model Breban et al.  [3] provided some evidence that supports the feasibility of the plan proving that no recurring outbreaks should occur for syphilis. We study in this work a syphilis model that includes partial...

Currently displaying 141 – 160 of 4759