On a horizontal structure on differentiable manifolds
We show the existence of invariant measures for Markov-Feller operators defined on completely regular topological spaces which satisfy the classical positivity condition.
We construct a transformation T:[0,1] → [0,1] having the following properties: 1) (T,|·|) is completely mixing, where |·| is Lebesgue measure, 2) for every f∈ L¹ with ∫fdx = 1 and φ ∈ C[0,1] we have , where μ is the cylinder measure on the standard Cantor set, 3) if φ ∈ C[0,1] then for Lebesgue-a.e. x.
In the present paper conditions are studied, under which a pseudo-orbit of a continuous map , where is a metric space, is shadowed, in a more general sense, by an accurate orbit of the map .
We study a system of nonlinear wave equations of the Kirchhoff-Carrier type containing a variant of the Balakrishnan-Taylor damping in nonlinear terms. By the linearization method together with the Faedo-Galerkin method, we prove the local existence and uniqueness of a weak solution. On the other hand, by constructing a suitable Lyapunov functional, a sufficient condition is also established to obtain the exponential decay of weak solutions.
A proof of the Chekanov theorem is discussed from a geometric point of view. Similar results in the context of projectivized cotangent bundles are proved. Some applications are given.
Rees-Shishikura’s theorem plays an important role in the study of matings of polynomials. It promotes Thurston’s combinatorial equivalence into a semi-conjugacy. In this work we restate and reprove Rees-Shishikura’s theorem in a more general form, which can then be applied to a wider class of postcritically finite branched coverings. We provide an application of the restated theorem.
This paper gives a stochastic representation in spectral terms for the absorption time T of a finite Markov chain which is irreducible and reversible outside the absorbing point. This yields quantitative informations on the parameters of a similar representation due to O'Cinneide for general chains admitting real eigenvalues. In the discrete time setting, if the underlying Dirichlet eigenvalues (namely the eigenvalues of the Markov transition operator restricted to the functions vanishing on...
We consider the parabolic equation (P) , (t,x) ∈ ℝ₊ × ℝⁿ, and the corresponding semiflow π in the phase space H¹. We give conditions on the nonlinearity F(x,u), ensuring that all bounded sets of H¹ are π-admissible in the sense of Rybakowski. If F(x,u) is asymptotically linear, under appropriate non-resonance conditions, we use Conley’s index theory to prove the existence of nontrivial equilibria of (P) and of heteroclinic trajectories joining some of these equilibria. The results obtained extend...
We consider the problem of extending the result of J.-P. Jouanolou on the density of singular holomorphic foliations on without algebraic solutions to the case of foliations by curves on . We give an example of a foliation on with no invariant algebraic set (curve or surface) and prove that a dense set of foliations admits no invariant algebraic set.
We study relations between the almost specification property, the asymptotic average shadowing property and the average shadowing property for dynamical systems on compact metric spaces. We show implications between these properties and relate them to other important notions such as shadowing, transitivity, invariant measures, etc. We provide examples showing that compactness is a necessary condition for these implications to hold. As a consequence, we also obtain a proof that limit shadowing in...
Let f be a quadratic map (more generally, , d > 1) of the complex plane. We give sufficient conditions for f to have no measurable invariant linefields on its Julia set. We also prove that if the series converges absolutely, then its sum is non-zero. In the proof we use analytic tools, such as integral and transfer (Ruelle-type) operators and approximation theorems.
We describe two methods of obtaining analytic flows on the torus which are disjoint from dynamical systems induced by some classical stationary processes.