Displaying 101 – 120 of 121

Showing per page

S-unimodal Misiurewicz maps with flat critical points

Roland Zweimüller (2004)

Fundamenta Mathematicae

We consider S-unimodal Misiurewicz maps T with a flat critical point c and show that they exhibit ergodic properties analogous to those of interval maps with indifferent fixed (or periodic) points. Specifically, there is a conservative ergodic absolutely continuous σ-finite invariant measure μ, exact up to finite rotations, and in the infinite measure case the system is pointwise dual ergodic with many uniform and Darling-Kac sets. Determining the order of return distributions to suitable reference...

Support overlapping L 1 contractions and exact non-singular transformations

Michael Lin (2000)

Colloquium Mathematicae

Let T be a positive linear contraction of L 1 of a σ-finite measure space (X,Σ,μ) which overlaps supports. In general, T need not be completely mixing, but it is in the following cases: (i) T is the Frobenius-Perron operator of a non-singular transformation ϕ (in which case complete mixing is equivalent to exactness of ϕ). (ii) T is a Harris recurrent operator. (iii) T is a convolution operator on a compact group. (iv) T is a convolution operator on a LCA group.

Sur l'absence de mélange pour des flots spéciaux au-dessus d'une rotation irrationnelle

M. Lemańczyk (2000)

Colloquium Mathematicae

We prove the absence of mixing for special flows built over (1) an irrational rotation and under a function whose Fourier coefficients are of order O(1/|n|), and (2) an irrational rotation (satisfying a diophantine condition) and under a function having a finite number of singularities of a logarithmic type. These results generalize two theorems of Kochergin.

The Geometry of Model Spaces for Probability-Preserving Actions of Sofic Groups

Tim Austin (2016)

Analysis and Geometry in Metric Spaces

Bowen’s notion of sofic entropy is a powerful invariant for classifying probability-preserving actions of sofic groups. It can be defined in terms of the covering numbers of certain metric spaces associated to such an action, the ‘model spaces’. The metric geometry of these model spaces can exhibit various interesting features, some of which provide other invariants of the action. This paper explores an approximate connectedness property of the model spaces, and uses it give a new proof that certain...

The rate of convergence for iterated function systems

Maciej Ślęczka (2011)

Studia Mathematica

Iterated function systems with place-dependent probabilities are considered. It is shown that the rate of convergence of transition probabilities to a unique invariant measure is geometric.

The return sequence of the Bowen-Series map for punctured surfaces

Manuel Stadlbauer (2004)

Fundamenta Mathematicae

For a non-compact hyperbolic surface M of finite area, we study a certain Poincaré section for the geodesic flow. The canonical, non-invertible factor of the first return map to this section is shown to be pointwise dual ergodic with return sequence (aₙ) given by aₙ = π/(4(Area(M) + 2π)) · n/(log n). We use this result to deduce that the section map itself is rationally ergodic, and that the geodesic flow associated to M is ergodic with respect to the Liouville measure. ...

Tower multiplexing and slow weak mixing

Terrence Adams (2015)

Colloquium Mathematicae

A technique is presented for multiplexing two ergodic measure preserving transformations together to derive a third limiting transformation. This technique is used to settle a question regarding rigidity sequences of weak mixing transformations. Namely, given any rigidity sequence for an ergodic measure preserving transformation, there exists a weak mixing transformation which is rigid along the same sequence. This establishes a wide range of rigidity sequences for weakly mixing dynamical systems....

Twist systems on the interval

Jozef Bobok (2002)

Fundamenta Mathematicae

Let I be a compact real interval and let f:I → I be continuous. We describe an interval analogy of the irrational circle rotation that occurs as a subsystem of the dynamical system (I,f)-we call it an irrational twist system. Using a coding we show that any irrational twist system is strictly ergodic. We also prove that irrational twist systems exist as subsystems of a large class of systems (I,f) having a cycle of odd period greater than one.

Uniform mixing time for random walk on lamplighter graphs

Júlia Komjáthy, Jason Miller, Yuval Peres (2014)

Annales de l'I.H.P. Probabilités et statistiques

Suppose that 𝒢 is a finite, connected graph and X is a lazy random walk on 𝒢 . The lamplighter chain X associated with X is the random walk on the wreath product 𝒢 = 𝐙 2 𝒢 , the graph whose vertices consist of pairs ( f ̲ , x ) where f is a labeling of the vertices of 𝒢 by elements of 𝐙 2 = { 0 , 1 } and x is a vertex in 𝒢 . There is an edge between ( f ̲ , x ) and ( g ̲ , y ) in 𝒢 if and only if x is adjacent to y in 𝒢 and f z = g z for all z x , y . In each step, X moves from a configuration ( f ̲ , x ) by updating x to y using the transition rule of X and then sampling both...

Weak mixing and eigenvalues for Arnoux-Rauzy sequences

Julien Cassaigne, Sébastien Ferenczi, Ali Messaoudi (2008)

Annales de l’institut Fourier

We define by simple conditions two wide subclasses of the so-called Arnoux-Rauzy systems; the elements of the first one share the property of (measure-theoretic) weak mixing, thus we generalize and improve a counter-example to the conjecture that these systems are codings of rotations; those of the second one have eigenvalues, which was known hitherto only for a very small set of examples.

Weak mixing of a transformation similar to Pascal

Daniel M. Kane (2007)

Colloquium Mathematicae

We construct a class of transformations similar to the Pascal transformation, except for the use of spacers, and show that these transformations are weakly mixing.

Weakly mixing but not mixing quasi-Markovian processes

Zbigniew Kowalski (2000)

Studia Mathematica

Let (f,α) be the process given by an endomorphism f and by a finite partition α = A i i = 1 s of a Lebesgue space. Let E(f,α) be the class of densities of absolutely continuous invariant measures for skew products with the base (f,α). We say that (f,α) is quasi-Markovian if E ( f , α ) g : B i i = 1 s s u p p g = i = 1 s A i × B i . We show that there exists a quasi-Markovian process which is weakly mixing but not mixing. As a by-product we deduce that the set of all coboundaries which are measurable with respect to the ’chequer-wise’ partition for σ × S, where σ is...

Weakly mixing transformations and the Carathéodory definition of measurable sets

Amos Koeller, Rodney Nillsen, Graham Williams (2007)

Colloquium Mathematicae

Let 𝕋 denote the set of complex numbers of modulus 1. Let v ∈ 𝕋, v not a root of unity, and let T: 𝕋 → 𝕋 be the transformation on 𝕋 given by T(z) = vz. It is known that the problem of calculating the outer measure of a T-invariant set leads to a condition which formally has a close resemblance to Carathéodory's definition of a measurable set. In ergodic theory terms, T is not weakly mixing. Now there is an example, due to Kakutani, of a transformation ψ̃ which is weakly mixing but not strongly...

Currently displaying 101 – 120 of 121