Displaying 181 – 200 of 791

Showing per page

Dynamics semi-conjugated to a subshift for some polynomial mappings in C2.

Gabriel Vigny (2007)

Publicacions Matemàtiques

We study the dynamics near infinity of polynomial mappings f in C2. We assume that f has indeterminacy points and is non constant on the line at infinity L∞. If L∞ is f-attracting, we decompose the Green current along itineraries defined by the indeterminacy points and their preimages. The symbolic dynamics that arises is a subshift on an infinite alphabet.

Dynamique des nombres et physique des oscillateurs

Jacky Cresson (2008)

Journal de Théorie des Nombres de Bordeaux

Nous présentons un modèle mathématique permettant de reproduire le spectre expérimental des fréquences dans un composant électronique appelé boucle ouverte. Le spectre semble s’organiser suivant une contrainte de nature diophantienne sur les fréquences. Sa structure peut donc se comprendre via une étude de l’ensemble des fractions continues en fonction de leur longueur et de la taille des quotients partiels.

Dynamiques recuites de type Feynman-Kac : résultats précis et conjectures

Pierre Del Moral, Laurent Miclo (2006)

ESAIM: Probability and Statistics

Soit U une fonction définie sur un ensemble fini E muni d'un noyau markovien irréductible M. L'objectif du papier est de comparer théoriquement deux procédures stochastiques de minimisation globale de U : le recuit simulé et un algorithme génétique. Pour ceci on se placera dans la situation idéalisée d'une infinité de particules disponibles et nous ferons une hypothèse commode d'existence de suffisamment de symétries du cadre (E,M,U). On verra notamment que contrairement au recuit simulé, toute...

Effective equidistribution of S-integral points on symmetric varieties

Yves Benoist, Hee Oh (2012)

Annales de l’institut Fourier

Let K be a global field of characteristic not 2. Let Z = H G be a symmetric variety defined over K and S a finite set of places of K . We obtain counting and equidistribution results for the S-integral points of Z . Our results are effective when K is a number field.

Eigenvalues and simplicity of interval exchange transformations

Sébastien Ferenczi, Luca Q. Zamboni (2011)

Annales scientifiques de l'École Normale Supérieure

For a class of d -interval exchange transformations, which we call the symmetric class, we define a new self-dual induction process in which the system is successively induced on a union of sub-intervals. This algorithm gives rise to an underlying graph structure which reflects the dynamical behavior of the system, through the Rokhlin towers of the induced maps. We apply it to build a wide assortment of explicit examples on four intervals having different dynamical properties: these include the first...

Endomorphisms of the Cuntz algebras

Roberto Conti, Jeong Hee Hong, Wojciech Szymański (2011)

Banach Center Publications

This mainly expository article is devoted to recent advances in the study of dynamical aspects of the Cuntz algebras 𝓞ₙ, n < ∞, via their automorphisms and, more generally, endomorphisms. A combinatorial description of permutative automorphisms of 𝓞ₙ in terms of labelled, rooted trees is presented. This in turn gives rise to an algebraic characterization of the restricted Weyl group of 𝓞ₙ. It is shown how this group is related to certain classical dynamical systems on the Cantor set. An identification...

Entropy and growth of expanding periodic orbits for one-dimensional maps

A. Katok, A. Mezhirov (1998)

Fundamenta Mathematicae

Let f be a continuous map of the circle S 1 or the interval I into itself, piecewise C 1 , piecewise monotone with finitely many intervals of monotonicity and having positive entropy h. For any ε > 0 we prove the existence of at least e ( h - ε ) n k periodic points of period n k with large derivative along the period, | ( f n k ) ' | > e ( h - ε ) n k for some subsequence n k of natural numbers. For a strictly monotone map f without critical points we show the existence of at least ( 1 - ε ) e h n such points.

Entropy dimension and variational principle

Young-Ho Ahn, Dou Dou, Kyewon Koh Park (2010)

Studia Mathematica

Recently the notions of entropy dimension for topological and measurable dynamical systems were introduced in order to study the complexity of zero entropy systems. We exhibit a class of strictly ergodic models whose topological entropy dimensions range from zero to one and whose measure-theoretic entropy dimensions are identically zero. Hence entropy dimension does not obey the variational principle.

Currently displaying 181 – 200 of 791