Displaying 541 – 560 of 791

Showing per page

Pointwise ergodic theorems with rate and application to the CLT for Markov chains

Christophe Cuny, Michael Lin (2009)

Annales de l'I.H.P. Probabilités et statistiques

Let T be Dunford–Schwartz operator on a probability space (Ω, μ). For f∈Lp(μ), p>1, we obtain growth conditions on ‖∑k=1nTkf‖p which imply that (1/n1/p)∑k=1nTkf→0 μ-a.e. In the particular case that p=2 and T is the isometry induced by a probability preserving transformation we get better results than in the general case; these are used to obtain a quenched central limit theorem for additive functionals of stationary ergodic Markov chains, which improves those of Derriennic–Lin and Wu–Woodroofe....

Pointwise limits for sequences of orbital integrals

Claire Anantharaman-Delaroche (2010)

Colloquium Mathematicae

In 1967, Ross and Stromberg published a theorem about pointwise limits of orbital integrals for the left action of a locally compact group G on (G,ρ), where ρ is the right Haar measure. We study the same kind of problem, but more generally for left actions of G on any measure space (X,μ), which leave the σ-finite measure μ relatively invariant, in the sense that sμ = Δ(s)μ for every s ∈ G, where Δ is the modular function of G. As a consequence, we also obtain a generalization of a theorem of Civin...

Poisson suspensions of compactly regenerative transformations

Roland Zweimüller (2008)

Colloquium Mathematicae

For infinite measure preserving transformations with a compact regeneration property we establish a central limit theorem for visits to good sets of finite measure by points from Poissonian ensembles. This extends classical results about (noninteracting) infinite particle systems driven by Markov chains to the realm of systems driven by weakly dependent processes generated by certain measure preserving transformations.

Polynomial decay of correlations for a class of smooth flows on the two torus

Bassam Fayad (2001)

Bulletin de la Société Mathématique de France

Kočergin introduced in 1975 a class of smooth flows on the two torus that are mixing. When these flows have one fixed point, they can be viewed as special flows over an irrational rotation of the circle, with a ceiling function having a power-like singularity. Under a Diophantine condition on the rotation’s angle, we prove that the special flows actually have a t - η -speed of mixing, for some η > 0 .

Position dependent random maps in one and higher dimensions

Wael Bahsoun, Paweł Góra (2005)

Studia Mathematica

A random map is a discrete-time dynamical system in which one of a number of transformations is randomly selected and applied on each iteration of the process. We study random maps with position dependent probabilities on the interval and on a bounded domain of ℝⁿ. Sufficient conditions for the existence of an absolutely continuous invariant measure for a random map with position dependent probabilities on the interval and on a bounded domain of ℝⁿ are the main results.

Positive L¹ operators associated with nonsingular mappings and an example of E. Hille

Isaac Kornfeld, Wojciech Kosek (2003)

Colloquium Mathematicae

E. Hille [Hi1] gave an example of an operator in L¹[0,1] satisfying the mean ergodic theorem (MET) and such that supₙ||Tⁿ|| = ∞ (actually, | | T | | n 1 / 4 ). This was the first example of a non-power bounded mean ergodic L¹ operator. In this note, the possible rates of growth (in n) of the norms of Tⁿ for such operators are studied. We show that, for every γ > 0, there are positive L¹ operators T satisfying the MET with l i m n | | T | | / n 1 - γ = . I n t h e c l a s s o f p o s i t i v e o p e r a t o r s t h e s e e x a m p l e s a r e t h e b e s t p o s s i b l e i n t h e s e n s e t h a t f o r e v e r y s u c h o p e r a t o r T t h e r e e x i s t s a γ > 0 s u c h t h a t lim supn→ ∞ ||Tⁿ||/n1-γ₀ = 0 . A class of numerical sequences αₙ, intimately related to the...

Predictability, entropy and information of infinite transformations

Jon Aaronson, Kyewon Koh Park (2009)

Fundamenta Mathematicae

We show that a certain type of quasifinite, conservative, ergodic, measure preserving transformation always has a maximal zero entropy factor, generated by predictable sets. We also construct a conservative, ergodic, measure preserving transformation which is not quasifinite; and consider distribution asymptotics of information showing that e.g. for Boole's transformation, information is asymptotically mod-normal with normalization ∝ √n. Lastly, we show that certain ergodic, probability preserving...

Pressure and recurrence

Véronique Maume-Deschamps, Bernard Schmitt, Mariusz Urbański, Anna Zdunik (2003)

Fundamenta Mathematicae

We deal with a subshift of finite type and an equilibrium state μ for a Hölder continuous function. Let αⁿ be the partition into cylinders of length n. We compute (in particular we show the existence of the limit) l i m n n - 1 l o g j = 0 τ ( x ) μ ( α ( T j ( x ) ) ) , where α ( T j ( x ) ) is the element of the partition containing T j ( x ) and τₙ(x) is the return time of the trajectory of x to the cylinder αⁿ(x).

Progressions arithmétiques dans les nombres premiers

Bernard Host (2004/2005)

Séminaire Bourbaki

Récemment, B. Green et T. Tao ont montré que : l’ensemble des nombres premiers contient des progressions arithmétiques de toutes longueurs répondant ainsi à une question ancienne à la formulation particulièrement simple. La démonstration n’utilise aucune des méthodes “transcendantes” ni aucun des grands théorèmes de la théorie analytique des nombres. Elle est écrite dans un esprit proche de celui de la théorie ergodique, en particulier de celui de la preuve par Furstenberg du théorème de Szemerédi,...

Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations

Ciprian Foias, Ricardo M. S. Rosa, Roger Temam (2013)

Annales de l’institut Fourier

This work is devoted to the concept of statistical solution of the Navier-Stokes equations, proposed as a rigorous mathematical object to address the fundamental concept of ensemble average used in the study of the conventional theory of fully developed turbulence. Two types of statistical solutions have been proposed in the 1970’s, one by Foias and Prodi and the other one by Vishik and Fursikov. In this article, a new, intermediate type of statistical solution is introduced and studied. This solution...

Properties of Wiener-Wintner dynamical systems

I. Assani, K. Nicolaou (2001)

Bulletin de la Société Mathématique de France

In this paper we prove the following results. First, we show the existence of Wiener-Wintner dynamical system with continuous singular spectrum in the orthocomplement of their respective Kronecker factors. The second result states that if f L p , p large enough, is a Wiener-Wintner function then, for all γ ( 1 + 1 2 p - β 2 , 1 ] , there exists a set X f of full measure for which the series n = 1 f ( T n x ) e 2 π i n ϵ n γ converges uniformly with respect to ϵ .

Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci

Nataliya Chekhova, Pascal Hubert, Ali Messaoudi (2001)

Journal de théorie des nombres de Bordeaux

Nous étudions certaines propriétés combinatoires, ergodiques et arithmétiques du point fixe de la substitution de Tribonacci (introduite par G. Rauzy) et de la rotation du tore 𝕋 2 qui lui est associée. Nous établissons une généralisation géométrique du théorème des trois distances et donnons une formule explicite pour la fonction de récurrence du point fixe. Nous donnons des propriétés d’approximation diophantienne du vecteur de la rotation de 𝕋 2 : nous montrons, que pour une norme adaptée, la suite...

Currently displaying 541 – 560 of 791