Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps
We prove that if A is the basin of immediate attraction to a periodic attracting or parabolic point for a rational map f on the Riemann sphere, if A is completely invariant (i.e. ), and if μ is an arbitrary f-invariant measure with positive Lyapunov exponents on ∂A, then μ-almost every point q ∈ ∂A is accessible along a curve from A. In fact, we prove the accessibility of every “good” q, i.e. one for which “small neigh bourhoods arrive at large scale” under iteration of f. This generalizes the...