Systèmes dynamiques topologiques I. Étude des limites de cobords
Let X be a locally compact, separable metric space. We prove that , where and stand for the concentration dimension and the topological dimension of X, respectively.
By a dynamical system we mean the action of the semigroup on a metrizable topological space induced by a continuous selfmap . Let denote the set of all compatible metrics on the space . Our main objective is to show that a selfmap of a compact space is a Banach contraction relative to some if and only if there exists some which, regarded as a -cocycle of the system , is a coboundary.
A lamination is a continuum which locally is the product of a Cantor set and an arc. We investigate the topological structure and embedding properties of laminations. We prove that a nondegenerate lamination cannot be tree-like and that a planar lamination has at least four complementary domains. Furthermore, a lamination in the plane can be obtained by a lakes of Wada construction.
The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle , that is, families of homeomorphisms such that and each either is the identity mapping or has no fixed point ( is an arbitrary -divisible nontrivial (i.e., ) abelian group).
We prove that if f, g are smooth unimodal maps of the interval with negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is Collet-Eckmann, then so is g.
In 2005, İ. Tok fuzzified the notion of the topological entropy R. A. Adler et al. (1965) using the notion of fuzzy compactness of C. L. Chang (1968). In the present paper, we have proposed a new definition of the fuzzy topological entropy of fuzzy continuous mapping, namely weakly fuzzy topological entropy based on the notion of weak fuzzy compactness due to R. Lowen (1976) along with its several properties. We have shown that the topological entropy R. A. Adler et al. (1965) of continuous mapping...
We study the law of coexistence of different types of cycles for a continuous map of the interval. For this we introduce the notion of eccentricity of a pattern and characterize those patterns with a given eccentricity that are simplest from the point of view of the forcing relation. We call these patterns X-minimal. We obtain a generalization of Sharkovskiĭ's Theorem where the notion of period is replaced by the notion of eccentricity.