Page 1 Next

Displaying 1 – 20 of 72

Showing per page

C 1 -minimal subsets of the circle

Dusa McDuff (1981)

Annales de l'institut Fourier

Necessary conditions are found for a Cantor subset of the circle to be minimal for some C 1 -diffeomorphism. These conditions are not satisfied by the usual ternary Cantor set.

C 1 self-maps on closed manifolds with finitely many periodic points all of them hyperbolic

Jaume Llibre, Víctor F. Sirvent (2016)

Mathematica Bohemica

Let X be a connected closed manifold and f a self-map on X . We say that f is almost quasi-unipotent if every eigenvalue λ of the map f * k (the induced map on the k -th homology group of X ) which is neither a root of unity, nor a zero, satisfies that the sum of the multiplicities of λ as eigenvalue of all the maps f * k with k odd is equal to the sum of the multiplicities of λ as eigenvalue of all the maps f * k with k even. We prove that if f is C 1 having finitely many periodic points all of them hyperbolic,...

C¹ stability of endomorphisms on two-dimensional manifolds

J. Iglesias, A. Portela, A. Rovella (2012)

Fundamenta Mathematicae

A set of necessary conditions for C¹ stability of noninvertible maps is presented. It is proved that the conditions are sufficient for C¹ stability in compact oriented manifolds of dimension two. An example given by F. Przytycki in 1977 is shown to satisfy these conditions. It is the first example known of a C¹ stable map (noninvertible and nonexpanding) in a manifold of dimension two, while a wide class of examples are already known in every other dimension.

C¹ stable maps: examples without saddles

J. Iglesias, A. Portela, A. Rovella (2010)

Fundamenta Mathematicae

We give here the first examples of C¹ structurally stable maps on manifolds of dimension greater than two that are neither diffeomorphisms nor expanding. It is shown that an Axiom A endomorphism all of whose basic pieces are expanding or attracting is C¹ stable. A necessary condition for the existence of such examples is also given.

C¹-maps having hyperbolic periodic points

N. Aoki, Kazumine Moriyasu, N. Sumi (2001)

Fundamenta Mathematicae

We show that the C¹-interior of the set of maps satisfying the following conditions: (i) periodic points are hyperbolic, (ii) singular points belonging to the nonwandering set are sinks, coincides with the set of Axiom A maps having the no cycle property.

C¹-Stably Positively Expansive Maps

Kazuhiro Sakai (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

The notion of C¹-stably positively expansive differentiable maps on closed C manifolds is introduced, and it is proved that a differentiable map f is C¹-stably positively expansive if and only if f is expanding. Furthermore, for such maps, the ε-time dependent stability is shown. As a result, every expanding map is ε-time dependent stable.

Central limit theorem for sampled sums of dependent random variables

Nadine Guillotin-Plantard, Clémentine Prieur (2010)

ESAIM: Probability and Statistics

We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a -valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics3 (2003) 477–497]. An application to parametric estimation by random sampling is also provided.

Centralisateurs des difféomorphismes de la demi-droite

Hélène Eynard-Bontemps (2008/2009)

Séminaire de théorie spectrale et géométrie

Soit f un difféomorphisme lisse de + fixant seulement l’origine, et 𝒵 r son centralisateur dans le groupe des difféomorphismes 𝒞 r . Des résultat classiques de Kopell et Szekeres montrent que 𝒵 1 est toujours un groupe à un paramètre. En revanche, Sergeraert a construit un f dont le centralisateur 𝒵 est réduit au groupe des itérés de f . On présente ici le résultat principal de [3] : 𝒵 peut en fait être un sous-groupe propre et non-dénombrable (donc dense) de 𝒵 1 .

Chaos in some planar nonautonomous polynomial differential equation

Klaudiusz Wójcik (2000)

Annales Polonici Mathematici

We show that under some assumptions on the function f the system ż = z ̅ ( f ( z ) e i ϕ t + e i 2 ϕ t ) generates chaotic dynamics for sufficiently small parameter ϕ. We use the topological method based on the Lefschetz fixed point theorem and the Ważewski retract theorem.

Chaos synchronization of a fractional nonautonomous system

Zakia Hammouch, Toufik Mekkaoui (2014)

Nonautonomous Dynamical Systems

In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the effectiveness of the proposed methods.

Currently displaying 1 – 20 of 72

Page 1 Next