Nekhoroshev estimates for quasi-convex hamiltonian systems.
We describe a connection between Nielsen fixed point theory and symplectic Floer homology for surfaces. A new asymptotic invariant of symplectic origin is defined.
We show that the Nielsen number is a knot invariant via representation variety.
Etant donné irrationnel de type constant, nous donnons des conditions explicites et génériques sur les pentes d’un homéomorphisme affine par morceaux du cercle de nombre de rotation , qui garantissent que la mesure de probabilité -invariante est singulière par rapport à la mesure de Haar. Cet article contient une preuve élémentaire d’un résultat de E. Ghys et V. Sergiescu : ”le nombre de rotation d’un homéomorphisme dyadique est rationnel”. Nous y étudions aussi le ratio set des homéomorphismes...
We study sets of non-typical points under the map mod 1 for non-integer β and extend our results from [Fund. Math. 209 (2010)] in several directions. In particular, we prove that sets of points whose forward orbit avoid certain Cantor sets, and the set of points for which ergodic averages diverge, have large intersection properties. We observe that the technical condition β > 1.541 found in the above paper can be removed.
In the present paper, we advance considerably the current knowledge on the topic of bifurcations of heteroclinic cycles for smooth, meaning C ∞, parametrized families {g t ∣t∈ℝ} of surface diffeomorphisms. We assume that a quadratic tangency q is formed at t=0 between the stable and unstable lines of two periodic points, not belonging to the same orbit, of a (uniformly hyperbolic) horseshoe K (see an example at the Introduction) and that such lines cross each other with positive relative speed as...
We explore the convergence/divergence of the normal form for a singularity of a vector field on with nilpotent linear part. We show that a Gevrey- vector field with a nilpotent linear part can be reduced to a normal form of Gevrey- type with the use of a Gevrey- transformation. We also give a proof of the existence of an optimal order to stop the normal form procedure. If one stops the normal form procedure at this order, the remainder becomes exponentially small.
We present a geometric proof of the Poincaré-Dulac Normalization Theorem for analytic vector fields with singularities of Poincaré type. Our approach allows us to relate the size of the convergence domain of the linearizing transformation to the geometry of the complex foliation associated to the vector field.