Measurable dynamics of -unimodal maps of the interval
Si dimostra l'esistenza di infinite soluzioni «multi-bump» - e conseguentemente il comportamento caotico - per una classe di sistemi Hamiltoniani del secondo ordine della forma per sufficientemente piccolo. Qui , e sono funzioni strettamente positive e periodiche e è un potenziale superquadratico (ad esempio ).
We construct a transformation T:[0,1] → [0,1] having the following properties: 1) (T,|·|) is completely mixing, where |·| is Lebesgue measure, 2) for every f∈ L¹ with ∫fdx = 1 and φ ∈ C[0,1] we have , where μ is the cylinder measure on the standard Cantor set, 3) if φ ∈ C[0,1] then for Lebesgue-a.e. x.
We study relations between the almost specification property, the asymptotic average shadowing property and the average shadowing property for dynamical systems on compact metric spaces. We show implications between these properties and relate them to other important notions such as shadowing, transitivity, invariant measures, etc. We provide examples showing that compactness is a necessary condition for these implications to hold. As a consequence, we also obtain a proof that limit shadowing in...
In this paper, a modified version of the Chaos Shift Keying (CSK) scheme for secure encryption and decryption of data will be discussed. The classical CSK method determines the correct value of binary signal through checking which initially unsynchronized system is getting synchronized. On the contrary, the new anti-synchronization CSK (ACSK) scheme determines the wrong value of binary signal through checking which already synchronized system is loosing synchronization. The ACSK scheme is implemented...