Conditions under which a Geodesic Flow is Anosov.
Utilisant le Théorème de Normalisation de Mourtada (Lect. Notes. in Math., no 1445, pp. 272-314), on montre que les polycycles hyperboliques et génériques sont de cyclicité finie dans les familles de champs de vecteurs du plan. Ceci implique que le 16e problème de Hilbert est localement vrai sur un ouvert dense dans l’espace des champs de vecteurs polynomiaux du plan de degré .
Nous étudions les flots d’Anosov sur les variétés compactes de dimension 3 pour lesquels les distributions stable et instable faibles sont de classe . Nous classons tous ces flots lorsqu’ils préservent le volume puis nous construisons une famille d’exemples qui ne préservent pas le volume. Nous classons aussi ces flots sous une hypothèse de “pincement”. En application, nous décrivons les déformations des groupes fuchsiens dans le groupe des difféomorphismes du cercle.
We continue our study of the dynamics of mappings with small topological degree on projective complex surfaces. Previously, under mild hypotheses, we have constructed an ergodic “equilibrium” measure for each such mapping. Here we study the dynamical properties of this measure in detail: we give optimal bounds for its Lyapunov exponents, prove that it has maximal entropy, and show that it has product structure in the natural extension. Under a natural further assumption, we show that saddle points...
We give an elementary proof for the uniqueness of absolutely continuous invariant measures for expanding random dynamical systems and study their mixing properties.