Displaying 601 – 620 of 712

Showing per page

Symbolic dynamics and Lyapunov exponents for Lozi maps

Diogo Baptista, Ricardo Severino (2012)

ESAIM: Proceedings

Building on the kneading theory for Lozi maps introduced by Yutaka Ishii, in 1997, we introduce a symbolic method to compute its largest Lyapunov exponent. We use this method to study the behavior of the largest Lyapunov exponent for the set of points whose forward and backward orbits remain bounded, and find the maximum value that the largest Lyapunov exponent can assume.

Synchronization with error bound of non-identical forced oscillators

Jian Gen Wang, Jianping Cai, Mihua Ma, Jiuchao Feng (2008)

Kybernetika

Synchronization with error bound of two non-identical forced oscillators is studied in the paper. By introducing two auxiliary autonomous systems, differential inequality technique and active control technique are used to deal with the synchronization of two non-identical forced oscillators with parameter mismatch in external harmonic excitations. Numerical simulations show the effectiveness of the proposed method.

Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale

Carlos Gustavo Moreira, Jean-Christophe Yoccoz (2010)

Annales scientifiques de l'École Normale Supérieure

Soit F 0 un difféomorphisme d’une surface possédant deux fers à cheval Λ , Λ ' tels que W s Λ et W u Λ ' aient en un point q une tangence quadratique isolée. Nous montrons que, si la somme des dimensions transverses de W s Λ et W u Λ ' est strictement plus grande que 1, les difféomorphismes voisins de F 0 tels que W s Λ et W u Λ ' soient stablement tangents au voisinage de q forment une partie de densité inférieure strictement positive en F 0 .

The behaviour of the nonwandering set of a piecewise monotonic interval map under small perturbations

Peter Raith (1997)

Mathematica Bohemica

In this paper piecewise monotonic maps T [ 0 , 1 ] [ 0 , 1 ] are considered. Let Q be a finite union of open intervals, and consider the set R ( Q ) of all points whose orbits omit Q . The influence of small perturbations of the endpoints of the intervals in Q on the dynamical system ( R ( Q ) , T ) is investigated. The decomposition of the nonwandering set into maximal topologically transitive subsets behaves very unstably. Nonetheless, it is shown that a maximal topologically transitive subset cannot be completely destroyed by arbitrary...

The Bernoulli shift as a basic chaotic dynamical system

Kučera, Václav (2019)

Programs and Algorithms of Numerical Mathematics

We give a brief introduction to the Bernoulli shift map as a basic chaotic dynamical system. We give several examples where the iterates of a~mapping can be understood using the Bernoulli shift. Namely, the iteration of real interval maps and iteration of quadratic functions in the complex plain.

Currently displaying 601 – 620 of 712