weakly chaotic functions with zero topological entropy and non- flat critical points.
We show that the C¹-interior of the set of maps satisfying the following conditions: (i) periodic points are hyperbolic, (ii) singular points belonging to the nonwandering set are sinks, coincides with the set of Axiom A maps having the no cycle property.
The notion of C¹-stably positively expansive differentiable maps on closed manifolds is introduced, and it is proved that a differentiable map f is C¹-stably positively expansive if and only if f is expanding. Furthermore, for such maps, the ε-time dependent stability is shown. As a result, every expanding map is ε-time dependent stable.
We show that under some assumptions on the function f the system generates chaotic dynamics for sufficiently small parameter ϕ. We use the topological method based on the Lefschetz fixed point theorem and the Ważewski retract theorem.
In this paper we show how the main properties of chaos can be fully visualized at the light of a very easy to handle object, the tent function. Although very concrete, this case is representative of a very large number of examples, with more or less the same properties.
In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the effectiveness of the proposed methods.