Identification of discrete chaotic maps with singular points.
We investigate the question, due to S. Smale, of whether a hyperbolic automorphism T of the n-dimensional torus can have a compact invariant subset homeomorphic to a compact manifold of positive dimension, other than a finite union of subtori. In the simplest case such a manifold would be a closed surface. A result of Fathi says that T can sometimes have an invariant subset which is a finite-to-one image of a closed surface under a continuous map which is locally injective except possibly at a finite...
We study deformations of compact Riemannian manifolds of negative curvature. We give an equation for the infinitesimal conjugacy between geodesic flows. This in turn allows us to compute derivatives of intersection of metrics. As a consequence we obtain a proof of a theorem of Wolpert.
We consider the set of expanding maps of the circle which have a unique absolutely continuous invariant probability measure whose density is unbounded, and show that this set is dense in the space of expanding maps with the topology. This is in contrast with results for or maps, where the invariant densities can be shown to be continuous.
Let I be a real interval, J a subinterval of I, p ≥ 2 an integer number, and M1, ... , Mp : Ip → I the continuous means. We consider the problem of invariance of the graphs of functions ϕ : Jp−1 → I with respect to the mean-type mapping M = (M1, ... , Mp).Applying a result on the existence and uniqueness of an M -invariant mean [7], we prove that if the graph of a continuous function ϕ : Jp−1 → I ...
The local deformations of a submanifold under the effect of a smooth dynamical system are studied with the help of Oseledets’ multiplicative ergodic theorem. Equivalence classes of submanifolds, called jets, are introduced in order to describe these local deformations. They identify submanifolds having the same approximations up to some order at a given point. For every order , a condition on the Lyapunov exponents of the dynamical system is established insuring the convergence of the -jet of...
We classify reversible measures for the stable foliation on manifolds which are infinite covers of compact negatively curved manifolds. We extend the known results from hyperbolic surfaces to varying curvature and to all dimensions.
For the full shift (Σ₂,σ) on two symbols, we construct an invariant distributionally ϵ-scrambled set for all 0 < ϵ < diam Σ₂ in which each point is transitive, but not weakly almost periodic.