Displaying 181 – 200 of 433

Showing per page

Inverse Limits, Economics, and Backward Dynamics.

Judy Kennedy (2008)

RACSAM

We survey recent papers on the problem of backward dynamics in economics, providing along the way a glimpse at the economics perspective, a discussion of the economic models and mathematical tools involved, and a list of applicable literature in both mathematics and economics.

Inverse limits on intervals using unimodal bonding maps having only periodic points whose periods are all the powers of two

W. Ingram, Robert Roe (1999)

Colloquium Mathematicae

We derive several properties of unimodal maps having only periodic points whose period is a power of 2. We then consider inverse limits on intervals using a single strongly unimodal bonding map having periodic points whose only periods are all the powers of 2. One such mapping is the logistic map, f λ ( x ) = 4λx(1-x) on [f(λ),λ], at the Feigenbaum limit, λ ≈ 0.89249. It is known that this map produces an hereditarily decomposable inverse limit with only three topologically different subcontinua. Other...

Inverse problems of symbolic dynamics

Alexei Ya. Belov, Grigorii V. Kondakov, Ivan V. Mitrofanov (2011)

Banach Center Publications

This paper reviews some results regarding symbolic dynamics, correspondence between languages of dynamical systems and combinatorics. Sturmian sequences provide a pattern for investigation of one-dimensional systems, in particular interval exchange transformation. Rauzy graphs language can express many important combinatorial and some dynamical properties. In this case combinatorial properties are considered as being generated by a substitutional system, and dynamical properties are considered...

Involutions of real intervals

Gaetano Zampieri (2014)

Annales Polonici Mathematici

This paper shows a simple construction of continuous involutions of real intervals in terms of continuous even functions. We also study smooth involutions defined by symmetric equations. Finally, we review some applications, in particular a characterization of isochronous potentials by means of smooth involutions.

Kneading sequences for double standard maps

Michael Benedicks, Ana Rodrigues (2009)

Fundamenta Mathematicae

We investigate the symbolic dynamics for the double standard maps of the circle onto itself, given by f a , b ( x ) = 2 x + a + ( b / π ) s i n ( 2 π x ) ( m o d 1 ) , where b = 1 and a is a real parameter, 0 ≤ a < 1.

Labeled Rauzy classes and framed translation surfaces

Corentin Boissy (2013)

Annales de l’institut Fourier

In this paper, we compare two definitions of Rauzy classes. The first one was introduced by Rauzy and was in particular used by Veech to prove the ergodicity of the Teichmüller flow. The second one is more recent and uses a “labeling” of the underlying intervals, and was used in the proof of some recent major results about the Teichmüller flow.The Rauzy diagrams obtained from the second definition are coverings of the initial ones. In this paper, we give a formula that gives the degree of this covering.This...

Limit theorem for random walk in weakly dependent random scenery

Nadine Guillotin-Plantard, Clémentine Prieur (2010)

Annales de l'I.H.P. Probabilités et statistiques

Let S=(Sk)k≥0 be a random walk on ℤ and ξ=(ξi)i∈ℤ a stationary random sequence of centered random variables, independent of S. We consider a random walk in random scenery that is the sequence of random variables (Un)n≥0, where Un=∑k=0nξSk, n∈ℕ. Under a weak dependence assumption on the scenery ξ we prove a functional limit theorem generalizing Kesten and Spitzer’s [Z. Wahrsch. Verw. Gebiete50 (1979) 5–25] theorem.

Limiting curlicue measures for theta sums

Francesco Cellarosi (2011)

Annales de l'I.H.P. Probabilités et statistiques

We consider the ensemble of curves {γα, N: α∈(0, 1], N∈ℕ} obtained by linearly interpolating the values of the normalized theta sum N−1/2∑n=0N'−1exp(πin2α), 0≤N'&lt;N. We prove the existence of limiting finite-dimensional distributions for such curves as N→∞, when α is distributed according to any probability measure λ, absolutely continuous w.r.t. the Lebesgue measure on [0, 1]. Our Main Theorem generalizes a result by Marklof [Duke Math. J.97 (1999) 127–153] and Jurkat and van Horne [Duke...

Linear and metric maps on trees via Markov graphs

Sergiy Kozerenko (2018)

Commentationes Mathematicae Universitatis Carolinae

The main focus of combinatorial dynamics is put on the structure of periodic points (and the corresponding orbits) of topological dynamical systems. The first result in this area is the famous Sharkovsky's theorem which completely describes the coexistence of periods of periodic points for a continuous map from the closed unit interval to itself. One feature of this theorem is that it can be proved using digraphs of a special type (the so-called periodic graphs). In this paper we use Markov graphs...

Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps

Viviane Baladi, Daniel Smania (2012)

Annales scientifiques de l'École Normale Supérieure

We consider C 2 families t f t of  C 4 unimodal maps f t whose critical point is slowly recurrent, and we show that the unique absolutely continuous invariant measure μ t of  f t depends differentiably on  t , as a distribution of order 1 . The proof uses transfer operators on towers whose level boundaries are mollified via smooth cutoff functions, in order to avoid artificial discontinuities. We give a new representation of  μ t for a Benedicks-Carleson map f t , in terms of a single smooth function and the inverse branches...

Local density of diffeomorphisms with large centralizers

Christian Bonatti, Sylvain Crovisier, Gioia M. Vago, Amie Wilkinson (2008)

Annales scientifiques de l'École Normale Supérieure

Given any compact manifold M , we construct a non-empty open subset 𝒪 of the space Diff 1 ( M ) of C 1 -diffeomorphisms and a dense subset 𝒟 𝒪 such that the centralizer of every diffeomorphism in 𝒟 is uncountable, hence non-trivial.

Currently displaying 181 – 200 of 433